zoukankan      html  css  js  c++  java
  • uva 10648(简单dp)

    Recently one of my friend Tarik became a member of the food committee of an ACM regional competition. He has been given m distinguishable boxes, he has to put n types of chocolates in the boxes. The probability that one chocolate is placed in a certain box is 1/m. What is the probability that one or more boxes are empty? At first he thought it as an easy task. But soon he found that it was much harder. So, he falls into a great trouble and asked you to help him in this task. Input Each line of the input contains two integers n indicating total number of distinguishable types of chocolate and m indicating total number of distinguishable boxes (m ≤ n < 100). A single line containing ‘-1’ denotes the end. Output For each of the cases you should calculate the probability corrected to seven decimal places. The output format is shown below.

    Sample Input

    50 12

    50 12

    -1

    Sample Output

    Case 1: 0.1476651

    Case 2: 0.1476651

    思路:题目要求一个或者 多个盒子为空的概率,可以先求所有盒子都不为空的概率;

      设dp[i][j]为i个巧克力放入j个盒子的概率;

      分为两种情况:1)前i-1个巧克力放入了j个盒子:则第i个就放入前j个盒子;

             2)前i-1个巧克力放入了j-1个盒子:则第i个就放入剩下的m-(j-1)个盒子;

      状态转移公式为:dp[i][j]=dp[i-1][j]*f[j]+dp[i-1][j-1]*f[m-j+1];

        f[i]为i/m;

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<algorithm>
     4 #include<cstring>
     5 #include<cstdlib>
     6 #include<iomanip>
     7 #include<cmath>
     8 #include<vector>
     9 #include<queue>
    10 #include<stack>
    11 using namespace std;
    12 #define PI 3.141592653589792128462643383279502
    13 double dp[105][105];
    14 int i,j,k,n,m;
    15 double f[106];
    16 int main(){
    17     //#ifdef CDZSC_June
    18    // freopen("in.txt","r",stdin);
    19     //#endif
    20     //std::ios::sync_with_stdio(false);
    21     k=0;
    22     while(cin>>n){
    23         if(n==-1) break;
    24         cin>>m;
    25         memset(dp,0,sizeof(dp));
    26         for(i=1;i<=m;i++) f[i]=(double)i/m;
    27         dp[1][1]=1;
    28         for(i=2;i<=n;i++)
    29         for(j=1;j<=m;j++){
    30             dp[i][j]=dp[i-1][j]*f[j]+dp[i-1][j-1]*f[m-j+1];
    31         }
    32         printf("Case %d: %.7lf
    ",++k,1-dp[n][m]);
    33     }
    34     return 0;
    35 }
  • 相关阅读:
    DP2_第K优解
    DP1
    算法第一讲_动态规划
    CodeForces 487A Fight the Monster
    HDU 2899 Strange fuction
    lower_bound() 与 upper_bound()
    jQuery qrcode生成二维码
    本地代码上传至git仓库
    图片懒加载
    react-native学习(一)————使用react-native-tab-navigator创建底部导航
  • 原文地址:https://www.cnblogs.com/yoyo-sincerely/p/5115442.html
Copyright © 2011-2022 走看看