zoukankan      html  css  js  c++  java
  • uva 10648(简单dp)

    Recently one of my friend Tarik became a member of the food committee of an ACM regional competition. He has been given m distinguishable boxes, he has to put n types of chocolates in the boxes. The probability that one chocolate is placed in a certain box is 1/m. What is the probability that one or more boxes are empty? At first he thought it as an easy task. But soon he found that it was much harder. So, he falls into a great trouble and asked you to help him in this task. Input Each line of the input contains two integers n indicating total number of distinguishable types of chocolate and m indicating total number of distinguishable boxes (m ≤ n < 100). A single line containing ‘-1’ denotes the end. Output For each of the cases you should calculate the probability corrected to seven decimal places. The output format is shown below.

    Sample Input

    50 12

    50 12

    -1

    Sample Output

    Case 1: 0.1476651

    Case 2: 0.1476651

    思路:题目要求一个或者 多个盒子为空的概率,可以先求所有盒子都不为空的概率;

      设dp[i][j]为i个巧克力放入j个盒子的概率;

      分为两种情况:1)前i-1个巧克力放入了j个盒子:则第i个就放入前j个盒子;

             2)前i-1个巧克力放入了j-1个盒子:则第i个就放入剩下的m-(j-1)个盒子;

      状态转移公式为:dp[i][j]=dp[i-1][j]*f[j]+dp[i-1][j-1]*f[m-j+1];

        f[i]为i/m;

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<algorithm>
     4 #include<cstring>
     5 #include<cstdlib>
     6 #include<iomanip>
     7 #include<cmath>
     8 #include<vector>
     9 #include<queue>
    10 #include<stack>
    11 using namespace std;
    12 #define PI 3.141592653589792128462643383279502
    13 double dp[105][105];
    14 int i,j,k,n,m;
    15 double f[106];
    16 int main(){
    17     //#ifdef CDZSC_June
    18    // freopen("in.txt","r",stdin);
    19     //#endif
    20     //std::ios::sync_with_stdio(false);
    21     k=0;
    22     while(cin>>n){
    23         if(n==-1) break;
    24         cin>>m;
    25         memset(dp,0,sizeof(dp));
    26         for(i=1;i<=m;i++) f[i]=(double)i/m;
    27         dp[1][1]=1;
    28         for(i=2;i<=n;i++)
    29         for(j=1;j<=m;j++){
    30             dp[i][j]=dp[i-1][j]*f[j]+dp[i-1][j-1]*f[m-j+1];
    31         }
    32         printf("Case %d: %.7lf
    ",++k,1-dp[n][m]);
    33     }
    34     return 0;
    35 }
  • 相关阅读:
    HTML课堂笔记
    pycrul使用
    计算机网络概述
    重温冒泡排序
    初识MySQL
    宝塔Linux面板安装教程
    运维和shell
    nginx学习总结
    docker学习汇总
    linux 安装redis 完整步骤
  • 原文地址:https://www.cnblogs.com/yoyo-sincerely/p/5115442.html
Copyright © 2011-2022 走看看