回归算法之岭回归
具有L2正则化的线性最小二乘法。岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。当数据集中存在共线性的时候,岭回归就会有用。
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import classification_report import pandas as pd import numpy as np def logistic(): """ 逻辑回归做二分类进行癌症预测(根据细胞的属性特征) :return: NOne """ # 构造列标签名字 column = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape', 'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses', 'Class'] # 读取数据 data = pd.read_csv( "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data", names=column) print(data) # 缺失值进行处理 data = data.replace(to_replace='?', value=np.nan) data = data.dropna() # 进行数据的分割 x_train, x_test, y_train, y_test = train_test_split(data[column[1:10]], data[column[10]], test_size=0.25) # 进行标准化处理 std = StandardScaler() x_train = std.fit_transform(x_train) x_test = std.transform(x_test) # 逻辑回归预测 lg = LogisticRegression(C=1.0) lg.fit(x_train, y_train) print(lg.coef_) y_predict = lg.predict(x_test) print("准确率:", lg.score(x_test, y_test)) print("召回率:", classification_report(y_test, y_predict, labels=[2, 4], target_names=["良性", "恶性"])) return None if __name__ == "__main__": logistic()