zoukankan      html  css  js  c++  java
  • python插入Elasticsearch操作

    在用scrapy做爬虫的时候,需要将数据存入的es中。网上找了两种方法,照葫芦画瓢也能出来,暂记下来:

    首先安装了es,版本是5.6.1的较早版本

    用pip安装与es版本相对的es相关包

    pip install elasticsearch-dsl==5.1.0

    方法一:

    以下是pipelines.py模块的完整代码

    # -*- coding: utf-8 -*-
    
    # Define your item pipelines here
    #
    # Don't forget to add your pipeline to the ITEM_PIPELINES setting
    # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
    import chardet
    
    class SinafinancespiderPipeline(object):
        def process_item(self, item, spider):
            return item
    
    
    # 写入到es中,需要在settings中启用这个类 ExchangeratespiderESPipeline
    # 需要安装pip install elasticsearch-dsl==5.1.0  注意与es版本需要对应
    from elasticsearch_dsl import  Date,Nested,Boolean,analyzer,Completion,Keyword,Text,Integer,DocType
    from elasticsearch_dsl.connections import connections
    connections.create_connection(hosts=['192.168.52.138'])
    from elasticsearch import Elasticsearch
    es = Elasticsearch()
    
    class AticleType(DocType):
        page_from = Keyword()
        # domain报错
        domain=Keyword()
        cra_url=Keyword()
        spider = Keyword()
        cra_time = Keyword()
        page_release_time = Keyword()
        page_title = Text(analyzer="ik_max_word")
        page_content = Text(analyzer="ik_max_word")
    class Meta:
            index = "scrapy"
            doc_type = "sinafinance"
            # 以下settings和mappings都没起作用,暂且记下
            settings = {
                "number_of_shards": 3,
            }
            mappings = {
                '_id':{'path':'cra_url'}
            }
    
    
    class ExchangeratespiderESPipeline(DocType):
        from elasticsearch5 import  Elasticsearch
        ES = ['192.168.52.138:9200']
        es = Elasticsearch(ES,sniff_on_start=True)
    
        def process_item(self, item, spider):
    
            spider.logger.info("-----enter into insert ES")
            article = AticleType()
    
            article.page_from=item['page_from']
            article.domain=item['domain']
            article.cra_url =item['cra_url']
            article.spider =item['spider']
            article.cra_time =item['cra_time']
            article.page_release_time =item['page_release_time']
            article.page_title =item['page_title']
            article.page_content =item['page_content']
    
            article.save()
            return item

    以上方法能将数据写入es,但是如果重复爬取的话,会重复插入数据,因为 主键  ”_id”  是ES自己产生的,找不到自定义_id的入口。于是放弃。

    方法二:实现自定义主键写入,覆盖插入

    # -*- coding: utf-8 -*-
    
    # Define your item pipelines here
    #
    # Don't forget to add your pipeline to the ITEM_PIPELINES setting
    # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
    from elasticsearch5 import Elasticsearch
    
    class SinafinancespiderPipeline(object):
        def process_item(self, item, spider):
            return item
    
    
    # 写入到es中,需要在settings中启用这个类 ExchangeratespiderESPipeline
    # 需要安装pip install elasticsearch-dsl==5.1.0  注意与es版本需要对应
    class SinafinancespiderESPipeline():
        def __init__(self):
            self.ES = ['192.168.52.138:9200']
            # 创建es客户端
            self.es = Elasticsearch(
                self.ES,
                # 启动前嗅探es集群服务器
                sniff_on_start=True,
                # es集群服务器结点连接异常时是否刷新es结点信息
                sniff_on_connection_fail=True,
                # 每60秒刷新节点信息
                sniffer_timeout=60
            )
    
    
        def process_item(self, item, spider):
            spider.logger.info("-----enter into insert ES")
            doc = {
                'page_from': item['page_from'],
                'domain': item['domain'],
                'spider': item['spider'],
                'page_release_time': item['page_release_time'],
                'page_title': item['page_title'],
                'page_content': item['page_content'],
                'cra_url': item['cra_url'],
                'cra_time': item['cra_time']
            }
            self.es.index(index='scrapy', doc_type='sinafinance', body=doc, id=item['cra_url'])
    
            return item

    搜索数据的方法:

    # 字典形式设置body
    query = { 'query': { 'bool': { 'must': [ {'match': {'_all': 'python web'}} ], 'filter': [ {'term': {'status': 2}} ] } } } ret = es.search(index='articles', doc_type='article', body=query)

    # 查询数据
    data = es.search(index='articles', doc_type='article', body=body)
    print(data)
    # 增加
    es.index(...)
    # 修改
    es.update(...)
    # 删除
    es.delete()

    完成后

    在settings.py模块中注册自定义的类

    ITEM_PIPELINES = {
       # 'sinafinancespider.pipelines.SinafinancespiderPipeline': 300,
       'sinafinancespider.pipelines.SinafinancespiderESPipeline': 300,
    }
  • 相关阅读:
    数字式频率计数器的选择
    频率计数器简介
    地铁时钟系统介绍
    铷原子时钟基准介绍
    GPS网络校时服务器厂家的选择?
    低频数字式相位测试仪的原理与使用
    如何选择一套网络时钟系统?
    GNSS卫星信号转发器应用与原理
    GPS卫星原子钟和原子频标介绍
    如何检定铷原子频率标准?
  • 原文地址:https://www.cnblogs.com/yoyowin/p/12209706.html
Copyright © 2011-2022 走看看