zoukankan      html  css  js  c++  java
  • [arc076F]Exhausted?[霍尔定理+线段树]

    题意

    地上 (1)(m) 个位置摆上椅子,有 (n) 个人要就座,每个人都有座位癖好:选择 (le L) 或者 (ge R) 的位置。问至少需要在两边添加多少个椅子能让所有人坐满。

    (mle nle 2 imes 10^5)

    分析

    • 因为最后的形式一定是左边和右边连续的一段+一些新加入的椅子。只需要求出所有人构成的子集 (|x|-|digamma (x)|) 的最大值,不需要知道具体哪些椅子参与了完美匹配。

    • 注意到区域的并除了全集以外仍然可以用 ([1,l]cup[r, m]) 来表示。

    • 考虑扫描线,枚举 (l,r) 之后找出所有满足 (Lle l ,rle R) 的人,能够证明这样不会错过最优解。

    • 如果某个子集的 (digamma) 是全集的话要特殊考虑,此时 (|x|-|digamma (x)|) 的值为 (n-m)

    • 总时间复杂度为 (O(nlogn))

    代码

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    #define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
    #define rep(i, a, b) for(int i = a; i <= b; ++i)
    #define pb push_back
    #define re(x) memset(x, 0, sizeof x)
    inline int gi() {
        int x = 0,f = 1;
        char ch = getchar();
        while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
        while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
        return x * f;
    }
    template <typename T> inline void Max(T &a, T b){if(a < b) a = b;}
    template <typename T> inline void Min(T &a, T b){if(a > b) a = b;}
    const int N = 2e5 + 7;
    int n, m, ans;
    int adv[N << 2], mx[N << 2];
    #define Ls o << 1
    #define Rs (o << 1 | 1)
    void st1(int o, int v) {
    	adv[o] += v;
    	mx[o] += v;
    }
    void pushdown(int o) {
    	if(!adv[o]) return;
    	st1(Ls, adv[o]);
    	st1(Rs, adv[o]);
    	adv[o] = 0;
    }
    void pushup(int o) {
    	mx[o] = max(mx[Ls], mx[Rs]);
    }
    void build(int l, int r,int o){ 
    	if(l == r) {
    		mx[o] = l;
    		return;
    	}int mid = l + r >> 1;
    	build(l, mid, Ls);
    	build(mid + 1, r, Rs);
    	pushup(o);
    }
    void modify(int L, int R, int l, int r,int o, int v) {
    	if(L > R) return;
    	if(L <= l && r <= R) {
    		st1(o, v);
    		return;
    	}
    	pushdown(o);int mid = l + r >> 1;
    	if(L <= mid) modify(L, R, l, mid, Ls, v);
    	if(R > mid)  modify(L, R, mid + 1, r, Rs, v);
    	pushup(o);
    }
    int query(int L, int R, int l, int r, int o) {
    	if(L > R) return 0;
    	if(L <= l && r <= R) return mx[o];
    	pushdown(o);int mid = l + r >> 1;
    	if(R <= mid) return query(L, R, l, mid, Ls);
    	if(L > mid)  return query(L, R, mid + 1, r, Rs);
    	return max(query(L, R, l, mid, Ls), query(L, R, mid + 1, r, Rs));
    }
    vector<int> h[N];
    int main() {
    	n = gi(), m = gi();
    	rep(i, 1, n) {
    		int l = gi(), r = gi();
    		h[l].pb(r);
    	}
    	build(0, m + 1, 1);
    	rep(l, 0, m + 1) {
    		for(auto r: h[l] ) {
    			modify(0, r, 0, m + 1, 1, 1);
    		}
    		Max(ans, query(l + 1, m + 1, 0, m + 1, 1) - l - m - 1);
    	}
    	printf("%d
    ", max(n - m, ans));
    	return 0;
    }
    
  • 相关阅读:
    图论小测
    有关连通性
    差分约束
    php中代码执行&&命令执行函数【转载】
    Boss直聘的一个csrf与url跳转漏洞(已经修复)
    Immunity Canvas初体验加操作指南
    SSRF复习版本
    XXE漏洞复习版本
    信息收集汇总
    web前端逆向初体验
  • 原文地址:https://www.cnblogs.com/yqgAKIOI/p/10218629.html
Copyright © 2011-2022 走看看