zoukankan      html  css  js  c++  java
  • tensorflow学习之搭建最简单的神经网络

    这几天在B站看莫烦的视频,学习一波,给出视频地址:https://www.bilibili.com/video/av16001891/?p=22

    先放出代码

    #####搭建神经网络测试
    def add_layer(inputs,in_size,out_size,activation_function=None):
        Weights = tf.Variable(tf.random_normal([in_size, out_size],dtype=np.float32))
        biases = tf.Variable(tf.zeros([1,out_size])+0.1)
        Wx_plus_b = tf.matmul(inputs, Weights)+biases
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
        return outputs
    
    x_data = np.linspace(-1,1,300)[:, np.newaxis]
    noise = np.random.normal(0,0.05,x_data.shape)
    y_data = np.square(x_data)-0.5+noise
    
    xs = tf.placeholder(tf.float32,[None,1])
    ys = tf.placeholder(tf.float32,[None,1])
    l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
    
    prediction = add_layer(l1,10,1,activation_function=None)
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                       reduction_indices=[1]))
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        for i in range(1000):
            sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
            if i% 50 ==0:
                print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
    #####

      首先,在add_layer函数中,参数有inputs,in_size,out_size,activation_function=None

    其中inupts是输入,in_size是输入维度,out_size是输出维度, activation_function是激活函数,

    Weights是权重,维度是(in_size*out_size);

    bias是偏置,维度是(1*out_size);

    Wx_plus_b的维度和out_size相同;

      x_data = np.linspace(-1,1,300)[:, np.newaxis]这步操作,表示生成-1到1之间均匀分布的300个数,然后转换维度,变成(300,1);noise和y_data的维度均和

    x_data相同;

      xs = tf.placeholder(tf.float32,[None,1])和ys = tf.placeholder(tf.float32,[None,1])表示生成xs和ys变量的占位符,维度是(None,1),不知道有多少行,但只要1列;

      l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)表示xs是inputs,in_size是1,out_size是10,激活函数是relu;添加了一层神经网络

      prediction = add_layer(l1,10,1,activation_function=None)表示输入是l1,in_size是10,out_size是1,没有激活函数

      接下去是计算损失,loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))

      之后一步是用梯度下降来优化损失函数;

    解释一下为什么不直接在add_layer函数中使用x_data:x_data是ndarray格式,Weights是Variable格式,不能直接相乘,所以要在session会话中用字典格式传入x_data和y_data,  也就是sess.run(train_step,feed_dict={xs:x_data,ys:y_data})

      

    人生苦短,何不用python
  • 相关阅读:
    pytest实现参数化(@pytest.mark.parametrize)
    pytest标记测试用例为预期失败(@pytest.mark.xfail)
    pytest标记跳过某些测试用例不执行
    pytest的conftest.py配置
    pytest之fixture使用
    模拟赛42 题解
    模拟赛41 题解
    一些可能永远用不到的性质
    补锅
    骗分杂谈
  • 原文地址:https://www.cnblogs.com/yqpy/p/11013542.html
Copyright © 2011-2022 走看看