zoukankan      html  css  js  c++  java
  • Tensorflow模型保存与载入

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    #载入数据集
    mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
    
    #每个批次100张照片
    batch_size = 100
    #计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size
    
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    prediction = tf.nn.softmax(tf.matmul(x,W)+b)
    
    #二次代价函数
    # loss = tf.reduce_mean(tf.square(y-prediction))
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    
    #初始化变量
    init = tf.global_variables_initializer()
    
    #结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    saver = tf.train.Saver()
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(11):
            for batch in range(n_batch):
                batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
                sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
            
            acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
            print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
        #保存模型
        saver.save(sess,'net/my_net.ckpt')

    以上是保存模型;

    #载入数据集
    mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
    
    #每个批次100张照片
    batch_size = 100
    #计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size
    
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    prediction = tf.nn.softmax(tf.matmul(x,W)+b)
    
    #二次代价函数
    # loss = tf.reduce_mean(tf.square(y-prediction))
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    
    #初始化变量
    init = tf.global_variables_initializer()
    
    #结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    saver = tf.train.Saver()
    
    with tf.Session() as sess:
        sess.run(init)
        print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))
        saver.restore(sess,'net/my_net.ckpt')
        print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))

    #
    0.098
    INFO:tensorflow:Restoring parameters from net/my_net.ckpt
    0.9179

    以下是载入模型,第一个print是看看随机生成的参数用于预测分类的结果;第二个print是看看载入的模型来预测分类的结果。

    人生苦短,何不用python
  • 相关阅读:
    js点击改变元素标签的样式JQ,动态加减class样式
    设置OFFICE默认比例,不分成两栏
    如何更改win7任务管理器的背景。ctrl+alt+delete调出来的界面的背景
    SQLServer 查询分析器里大小写转换快捷键
    SQL Server查询分析器里语句执行事务控制,防止增删改错
    JS生成二维码,文字,URL生成动态二维码,并在GridView里动态调用
    GridView动态绑定字段做参数,动态调用JS传参-JS
    sql server分页语句原始语句
    SQL 查询--日期条件(今日、昨日、本周、本月)
    将UIWebView显示的内容转为图片和PDF
  • 原文地址:https://www.cnblogs.com/yqpy/p/11228186.html
Copyright © 2011-2022 走看看