zoukankan      html  css  js  c++  java
  • 23. Merge k Sorted Lists

    题目:

    Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.

    链接: http://leetcode.com/problems/merge-k-sorted-lists/

    题解:

    使用min heap构建的priority queue, 遍历输入数组,将非空表头节点加入min PQ,每次从PQ中poll()出最小值作为当前结果,之后加入取出节点的下一个非空节点。 当min PQ为空时结束。

    Time Complexity - O(nlogn), Space Complexity - O(m), m为输入数组的length

    /**
     * Definition for singly-linked list.
     * public class ListNode {
     *     int val;
     *     ListNode next;
     *     ListNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public ListNode mergeKLists(ListNode[] lists) { // using priority queue (min heap)
            if(lists == null || lists.length == 0)
                return null;
            PriorityQueue<ListNode> minPQ = new PriorityQueue<ListNode>(lists.length, 
                new Comparator<ListNode>(){
                    public int compare(ListNode a, ListNode b) {
                        if(a.val < b.val)
                            return -1;
                        else if(a.val > b.val)
                            return 1;
                        else
                            return 0;
                    }
                });
            
            for(ListNode node : lists) {
                if(node != null)
                    minPQ.offer(node);
            }
                
            
            ListNode dummy = new ListNode(-1);
            ListNode node = dummy;
            
            while(minPQ.size() > 0) {
                ListNode tmp = minPQ.poll();
                node.next = tmp;
                if(tmp.next != null)
                    minPQ.offer(tmp.next);
                node = node.next;
            }
            
            return dummy.next;
        }
    }

    二刷:

    Java:

    跟一刷一样,也是先建立一个自带Comparator的min-oriented PriorityQueue。初始把所有非空list head都放进pq, 之后poll出当前最小的值设置为node.next,假如这条list非空,则将其之后的节点作为head放入pq中继续进行比较。这里insert和deleteMin操作复杂度都是O(logk),k是lists.length

    Time Complexity - O(nlogk), Space Complexity - O(k),  这里k为lists的长度,  n为所有的节点数

    /**
     * Definition for singly-linked list.
     * public class ListNode {
     *     int val;
     *     ListNode next;
     *     ListNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public ListNode mergeKLists(ListNode[] lists) {
            ListNode dummy = new ListNode(-1);
            ListNode node = dummy;
            PriorityQueue<ListNode> pq = new PriorityQueue<ListNode>(new Comparator<ListNode>() {
                public int compare(ListNode l1, ListNode l2) {
                    return l1.val - l2.val;
                }
                });
            for (ListNode head : lists) {
                if (head != null) {
                    pq.offer(head);
                }
            }
            while (pq.size() > 0) {
                node.next = pq.poll();
                node = node.next;
                if (node.next != null) {
                    pq.offer(node.next);
                }
            }
            return dummy.next;
        }
    }

    下面是把匿名Comparator换成了使用了Lambda expression, 但是巨慢无比。可能JVM还没有很好的优化。

    /**
     * Definition for singly-linked list.
     * public class ListNode {
     *     int val;
     *     ListNode next;
     *     ListNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public ListNode mergeKLists(ListNode[] lists) {
            ListNode dummy = new ListNode(-1);
            ListNode node = dummy;
            PriorityQueue<ListNode> pq = new PriorityQueue<ListNode>((ListNode l1, ListNode l2) -> l1.val - l2.val);
            for (ListNode head : lists) {
                if (head != null) {
                    pq.offer(head);
                }
            }
            while (pq.size() > 0) {
                node.next = pq.poll();
                node = node.next;
                if (node.next != null) {
                    pq.offer(node.next);
                }
                node.next = null;
            }
            return dummy.next;
        }
    }

    Python:

    还是不熟悉Python,好难写,多参考了cbmbbz,放了tuple在pq里。

    # Definition for singly-linked list.
    # class ListNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.next = None
    from Queue import PriorityQueue
    
    class Solution(object):
        def mergeKLists(self, lists):
            """
            :type lists: List[ListNode]
            :rtype: ListNode
            """
            dummy = ListNode(None)
            node = dummy
            pq = PriorityQueue();
            for head in lists:
                if head:
                    pq.put((head.val, head))
            while pq.qsize() > 0:
                node.next = pq.get()[1]
                node = node.next
                if node.next:
                    pq.put((node.next.val, node.next))
            return dummy.next
            

    需要继续学习heap的原理,heapify - swim up or sink down,bionomial heap等等。

    Reference:

    https://leetcode.com/discuss/9279/a-java-solution-based-on-priority-queue

    http://algs4.cs.princeton.edu/24pq/

    https://leetcode.com/discuss/78758/10-line-python-solution-with-priority-queue

    https://leetcode.com/discuss/55662/108ms-python-solution-with-heapq-and-avoid-changing-heap-size

  • 相关阅读:
    Redis:特殊数据类型,hyperloglog(基数),bitmap(位存储)
    Redis:特殊类型geospatial(地理位置类型,纬经度)
    Redis:zset常用指令
    Redis:hash常用指令
    Redis:set集合常用常用指令
    Pytorch学习-数据操作
    天池Python训练营笔记—Python基础入门:从变量到异常处理
    Python基础语法快速复习-面对对象编程
    Python基础语法快速复习-函数式编程
    Python基础语法快速复习-高级特性
  • 原文地址:https://www.cnblogs.com/yrbbest/p/4434799.html
Copyright © 2011-2022 走看看