题目:
Two elements of a binary search tree (BST) are swapped by mistake.
Recover the tree without changing its structure.
Note:
A solution using O(n) space is pretty straight forward. Could you devise a constant space solution?
链接: http://leetcode.com/problems/recover-binary-search-tree/
题解:
恢复BST。和上一题validate BST一样,可以使用recursive的 in-order traversal。 先递归查找左子树里root.val < prevNode.val的,确定第一个逆序的节点,之后继续搜索,查找第二个逆序的节点。注意不可以在第一次找到第二个逆序的时候就返回了,要继续查找。否则像[2, 3, 1]这样的case会通不过,因为直接就把2和3 swap了,并没有找到1。 最后把两个节点的val交换一下就可以了。
Time Complexity - O(n), Space Complexity - O(1)。
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { TreeNode firstNode; TreeNode secondNode; TreeNode lastNode; public void recoverTree(TreeNode root) { this.lastNode = new TreeNode(Integer.MIN_VALUE); inorderTraversal(root); int tmp = firstNode.val; firstNode.val = secondNode.val; secondNode.val = tmp; } private void inorderTraversal(TreeNode root) { if(root == null) return; inorderTraversal(root.left); if(firstNode == null && this.lastNode.val >= root.val) firstNode = lastNode; if(firstNode != null && this.lastNode.val >= root.val) secondNode = root; this.lastNode = root; inorderTraversal(root.right); } }
Update:
想了一下,不用初始化lastNode = new TreeNode(Integer.MIN_VALUE)。 当然初始化也可以,it doesn't matter。
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { TreeNode firstNode; TreeNode secondNode; TreeNode lastNode; public void recoverTree(TreeNode root) { inorderTraversal(root); int tmp = firstNode.val; firstNode.val = secondNode.val; secondNode.val = tmp; } private void inorderTraversal(TreeNode root) { if(root == null) return; inorderTraversal(root.left); if(lastNode != null && firstNode == null && lastNode.val >= root.val) firstNode = lastNode; if(lastNode != null && firstNode != null && lastNode.val >= root.val) secondNode = root; lastNode = root; inorderTraversal(root.right); } }
Reference:
https://leetcode.com/discuss/13034/no-fancy-algorithm-just-simple-and-powerful-order-traversal
https://leetcode.com/discuss/7319/an-elegent-time-complexity-and-space-complexity-algorithm
https://leetcode.com/discuss/41182/tree-deserializer-and-visualizer-for-python
https://leetcode.com/discuss/31543/a-concise-java-solution-using-morris-inorder-o-time-o-1-space
https://leetcode.com/discuss/26310/detail-explain-about-morris-traversal-finds-incorrect-pointer
http://www.cnblogs.com/AnnieKim/archive/2013/06/15/morristraversal.html