题目:
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.
Example:
Given nums = [-2, 0, 3, -5, 2, -1] sumRange(0, 2) -> 1 sumRange(2, 5) -> -1 sumRange(0, 5) -> -3
Note:
- You may assume that the array does not change.
- There are many calls to sumRange function.
链接: http://leetcode.com/problems/range-sum-query-immutable/
题解:
给定数组,求range之内的数组和。 我们可以新建一个dp数组来保存数据,dp[i]表示 0到i-1这i个数的sum,每次我们就可以在使用O(n)初始化之后,用O(1)的时间得到搜索结果了。
Time Complexity - O(n), Space Compleixty - O(1)。
public class NumArray { private int[] sum; public NumArray(int[] nums) { sum = new int[nums.length + 1]; for(int i = 1; i < sum.length; i++) { sum[i] = nums[i - 1] + sum[i - 1] ; } } public int sumRange(int i, int j) { return sum[j + 1] - sum[i]; } } // Your NumArray object will be instantiated and called as such: // NumArray numArray = new NumArray(nums); // numArray.sumRange(0, 1); // numArray.sumRange(1, 2);
二刷:
方法和一刷一样,新建一个数组来保存sum。注意边界条件。
Java:
public class NumArray { private int[] sums; public NumArray(int[] nums) { sums = new int[nums.length + 1]; for (int i = 1; i < sums.length; i++) { sums[i] = sums[i - 1] + nums[i - 1]; } } public int sumRange(int i, int j) { return sums[j + 1] - sums[i]; } } // Your NumArray object will be instantiated and called as such: // NumArray numArray = new NumArray(nums); // numArray.sumRange(0, 1); // numArray.sumRange(1, 2);
三刷:
跟上面一样。注意创建dp数组的时候我们增加1个长度,然后从1开始遍历,可以简化一些代码。 面试的时候还需要写明边界条件,比如i 和 j越界的情况。
Java:
public class NumArray { private int[] sums; public NumArray(int[] nums) { sums = new int[nums.length + 1]; for (int i = 1; i <= nums.length; i++) { sums[i] = sums[i - 1] + nums[i - 1]; } } public int sumRange(int i, int j) { return sums[j + 1] - sums[i]; } } // Your NumArray object will be instantiated and called as such: // NumArray numArray = new NumArray(nums); // numArray.sumRange(0, 1); // numArray.sumRange(1, 2);
public class NumArray { private int[] sums; public NumArray(int[] nums) { this.sums = new int[nums.length + 1]; for (int i = 0; i < nums.length; i++) { sums[i + 1] = sums[i] + nums[i]; } } public int sumRange(int i, int j) { return sums[j + 1] - sums[i]; } } // Your NumArray object will be instantiated and called as such: // NumArray numArray = new NumArray(nums); // numArray.sumRange(0, 1); // numArray.sumRange(1, 2);
Reference: