zoukankan      html  css  js  c++  java
  • 304. Range Sum Query 2D

    题目:

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

    Range Sum Query 2D
    The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

    Example:

    Given matrix = [
      [3, 0, 1, 4, 2],
      [5, 6, 3, 2, 1],
      [1, 2, 0, 1, 5],
      [4, 1, 0, 1, 7],
      [1, 0, 3, 0, 5]
    ]
    
    sumRegion(2, 1, 4, 3) -> 8
    sumRegion(1, 1, 2, 2) -> 11
    sumRegion(1, 2, 2, 4) -> 12
    

    Note:

    1. You may assume that the matrix does not change.
    2. There are many calls to sumRegion function.
    3. You may assume that row1 ≤ row2 and col1 ≤ col2.

    链接: http://leetcode.com/problems/range-sum-query-2d-immutable/

    题解:

    二维矩阵求Range Sum。这题我们也是用DP,不过dp的方法是: dp[i][j]等于从坐标matrix[0][0]到matrix[i - 1][j - 1]中所有元素的和。 这样我们就可以用中小学时计算矩形重叠面积的方法来计算出我们想要的结果。

    Time Complexity - O(n2), Space Complexity - O(n2)。

    public class NumMatrix {
        private int[][] sum;
        public NumMatrix(int[][] matrix) {
            if(matrix == null || matrix.length == 0) {
                return;
            }
            int rowNum = matrix.length, colNum = matrix[0].length;
            sum = new int[rowNum + 1][colNum + 1];
            
            for(int i = 1; i < sum.length; i++) {
                for(int j = 1; j < sum[0].length; j++) {
                    sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + matrix[i - 1][j - 1];
                }
            }
        }
    
        public int sumRegion(int row1, int col1, int row2, int col2) {
                return sum[row2 + 1][col2 + 1] - sum[row1][col2 + 1] - sum[row2 + 1][col1] + sum[row1][col1];
        }
    }
    
    
    // Your NumMatrix object will be instantiated and called as such:
    // NumMatrix numMatrix = new NumMatrix(matrix);
    // numMatrix.sumRegion(0, 1, 2, 3);
    // numMatrix.sumRegion(1, 2, 3, 4);

    Reference:

    https://leetcode.com/discuss/69047/clean-and-easy-to-understand-java-solution

    https://leetcode.com/discuss/69424/clean-c-solution-and-explaination-o-mn-space-with-o-1-time

    https://leetcode.com/discuss/69144/c-with-helper

    https://leetcode.com/discuss/69054/dp-java-solution

    https://leetcode.com/discuss/69045/sharing-my-python-solution

    https://leetcode.com/discuss/71297/my-java-solution-only-used-6-ms

    https://leetcode.com/discuss/69611/share-my-short-java-solution

    https://leetcode.com/discuss/69435/my-c-solution-o-n-2-setup-o-1-sumregion

    https://leetcode.com/discuss/69141/range-sum-query-2d-mutable-c-tree-array

    https://leetcode.com/discuss/69137/short-python-solution-exactly-same-that-solves-range-query

    https://leetcode.com/discuss/69117/c-solution-o-1-for-sumregion-function

  • 相关阅读:
    大话设计模式总结(28种设计模式定义+简单理解)
    Dbank网盘下载地址提取ASP
    C#特性详解
    wcf大文件传输解决之道(1)
    WCF完美搭建android平台服务之一
    堆栈和委托堆的区别(c#)一
    wcf完美搭建android平台服务之三
    liunx简单命令集合
    WCF完美搭建android平台服务之二
    WCF中常用的binding方式比较
  • 原文地址:https://www.cnblogs.com/yrbbest/p/5050027.html
Copyright © 2011-2022 走看看