zoukankan      html  css  js  c++  java
  • 305. Number of Islands II

    题目:

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand operation which turns the water at position (row, col) into a land. Given a list of positions to operate, count the number of islands after each addLand operation. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

    Example:

    Given m = 3, n = 3positions = [[0,0], [0,1], [1,2], [2,1]].
    Initially, the 2d grid grid is filled with water. (Assume 0 represents water and 1 represents land).

    0 0 0
    0 0 0
    0 0 0
    

    Operation #1: addLand(0, 0) turns the water at grid[0][0] into a land.

    1 0 0
    0 0 0   Number of islands = 1
    0 0 0
    

    Operation #2: addLand(0, 1) turns the water at grid[0][1] into a land.

    1 1 0
    0 0 0   Number of islands = 1
    0 0 0
    

    Operation #3: addLand(1, 2) turns the water at grid[1][2] into a land.

    1 1 0
    0 0 1   Number of islands = 2
    0 0 0
    

    Operation #4: addLand(2, 1) turns the water at grid[2][1] into a land.

    1 1 0
    0 0 1   Number of islands = 3
    0 1 0
    

    We return the result as an array: [1, 1, 2, 3]

    Challenge:

    Can you do it in time complexity O(k log mn), where k is the length of the positions?

    链接: http://leetcode.com/problems/number-of-islands-ii/

    题解:

    又是一道Union Find的经典题。这道题代码主要参考了yavinci大神。风格还是princeton Sedgewick的那一套。这里我们可以把二维的Union-Find映射为一维的Union Find。使用Quick-Union就可以完成。但这样的话Time Complexity是O(kmn)。 想要达到O(klogmn)的话可能还需要使用Weighted-Quick Union配合path compression。二刷一定要实现。

    Time Complexity - O(mn * k), Space Complexity - O(mn)

    public class Solution {
        int[][] directions = {{0, 1}, {1, 0}, {-1, 0}, {0, -1}};
        
        public List<Integer> numIslands2(int m, int n, int[][] positions) {
            List<Integer> res = new ArrayList<>();
            if(m < 0 || n < 0 || positions == null) {
                return res;
            }
            int[] id = new int[m * n];          // union find array
            int count = 0;
            Arrays.fill(id, -1);
            
            for(int i = 0; i < positions.length; i++) {
                int index = n * positions[i][0] + positions[i][1];
                if(id[index] != -1) {
                    res.add(count);
                    continue;
                }
                
                id[index] = index;
                count++;
                
                for(int[] direction : directions) {
                    int x = positions[i][0] + direction[0];
                    int y = positions[i][1] + direction[1];
                    int neighborIndex = n * x + y;
                    if(x < 0 || x >= m || y < 0 || y >= n || id[neighborIndex] == -1) {
                        continue;
                    }
                    if(!connected(id, index, neighborIndex)) {
                        union(id, neighborIndex, index);
                        count--;    
                    }
                }
                
                res.add(count);
            }
            return res;
        }
        
        private boolean connected(int[] id, int p, int q) {
            return id[p] == id[q];
        }
        
        private void union(int[] id, int p, int q) {
            int pid = id[p];
            int qid = id[q];
            for(int i = 0; i < id.length; i++) {
                if(id[i] == pid) {
                    id[i] = qid;
                }
            }
        }
    }

    二刷:

    加入了Path compression以及Weight, 速度快了不少。

    Time Complexity - (k * logmn)  Space Complexity - O(mn),  这里k是positions的长度

    public class Solution {
        private int[] id;
        private int[] sz;
        private int[][] directions = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
        public List<Integer> numIslands2(int m, int n, int[][] positions) {
            List<Integer> res = new ArrayList<>();
            if (positions == null || positions.length == 0 || m < 0 || n < 0) {
                return res;
            }
            id = new int[m * n]; 
            sz = new int[m * n];
            for (int i = 0; i < id.length; i++) {
                id[i] = i;
            }
            
            int count = 0;
            for (int[] position : positions) {
                int p = position[0] * n + position[1];
                sz[p]++;
                count++;
                for (int[] direction : directions) {
                    int newRow = position[0] + direction[0];
                    int newCol = position[1] + direction[1];
                    if (newRow < 0 || newCol < 0 || newRow > m - 1 || newCol > n - 1) {
                        continue;
                    }
                    int q = newRow * n + newCol;
                    if (sz[q] > 0) {
                        if (isConnected(p, q)) {
                            continue;    
                        } else {
                            union(p, q);
                            count--;
                        }
                    }
                }
                res.add(count);
            }
            return res;
        }
        
        private int getRoot(int p) {
            while (p != id[p]) {
                id[p] = id[id[p]];
                p = id[p];
            } 
            return p;
        }
        
        private boolean isConnected(int p, int q) {
            return getRoot(p) == getRoot(q);
        }
        
        private void union(int p, int q) {
            int rootP = getRoot(p);
            int rootQ = getRoot(q);
            if (rootP == rootQ) {
                return;
            } else {
                if (sz[p] < sz[q]) {
                    id[rootP] = rootQ;
                    sz[q] += sz[p];
                } else {
                    id[rootQ] = rootP;
                    sz[p] += sz[q];
                }
            }
        }
    }

    Reference:

    https://leetcode.com/discuss/69392/python-clear-solution-unionfind-class-weighting-compression

    https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf

    https://leetcode.com/discuss/69397/my-simple-union-find-solution

    https://leetcode.com/discuss/69572/easiest-15ms-java-solution-written-mins-with-explanations

    https://leetcode.com/discuss/69585/union-find-java-implements

    https://leetcode.com/discuss/69374/solution-using-union-find-path-compression-weight-balancing

    https://leetcode.com/discuss/70392/java-union-find-solution

    https://leetcode.com/discuss/72435/share-my-java-union-find-solution

    https://leetcode.com/discuss/69513/simple-python-not-normal-union-find

    http://algs4.cs.princeton.edu/15uf/

  • 相关阅读:
    Camera
    iOS实现截屏 并合适保存
    将UIView转成UIImage,将UIImage转成PNG/JPG
    iOS7Status bar适配
    @synthesize obj=_obj的意义详解 @property和@synthesize
    iOS各种问题处理
    Foundation框架中的NSNumber对象详解
    iOS 文件和数据管理 (可能会删除本地文件储存)
    当ABAP遇见普罗米修斯
    一个工作13年的SAP开发人员的回忆:电子科技大学2000级新生入学指南
  • 原文地址:https://www.cnblogs.com/yrbbest/p/5050749.html
Copyright © 2011-2022 走看看