You have r red, g green and b blue balloons. To decorate a single table for the banquet you need exactly three balloons. Three balloons attached to some table shouldn't have the same color. What maximum number t of tables can be decorated if we know number of balloons of each color?
Your task is to write a program that for given values r, g and b will find the maximum number t of tables, that can be decorated in the required manner.
The single line contains three integers r, g and b (0 ≤ r, g, b ≤ 2·109) — the number of red, green and blue baloons respectively. The numbers are separated by exactly one space.
Print a single integer t — the maximum number of tables that can be decorated in the required manner.
In the first sample you can decorate the tables with the following balloon sets: "rgg", "gbb", "brr", "rrg", where "r", "g" and "b" represent the red, green and blue balls, respectively.
从网上找到两种代码,算法的核心思路是一样的。有待仔细研究一下,我想过要用该路的问题,但好像又行不通。
最后演变成了规律性的解。
#include <stdio.h>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
long long r;
long long g,b,ans;
int main()
{
scanf("%I64d%I64d%I64d",&r,&g,&b);
ans=min(min(min((r+g+b)/3,r+g),r+b),b+g);
printf("%I64d
",ans);
return 0;
}
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define INF 0x7fffffff
long long a[4], t;
int main()
{
#ifdef sxk
freopen("in.txt","r",stdin);
#endif
int n;
while(scanf("%lld%lld%lld",&a[0], &a[1], &a[2])!=EOF)
{
sort(a, a+3);
if(a[2] > 2*(a[0]+a[1])) t = a[0] + a[1];
else
t = (a[0]+a[1]+a[2])/3;
printf("%lld
", t);
}
return 0;
}