题目描述
In mathematics, a square number is an integer that is the square of an integer. In other words, it is the product of some integer with itself. For example, 9 is a square number, since it can be written as 3 * 3.
Given an array of distinct integers (a1, a2, ..., an), you need to find the number of pairs (ai, aj) that satisfy (ai * aj) is a square number.
输入
The first line of the input contains an integer T (1 ≤ T ≤ 20) which means the number of test cases.
Then T lines follow, each line starts with a number N (1 ≤ N ≤ 100000), then N integers followed (all the integers are between 1 and 1000000).
输出
For each test case, you should output the answer of each case.
示例输入
1 5 1 2 3 4 12
示例输出
2
题目:每组给你n个数,问这n这数中存在多少对这样的(ai, aj), ai*aj的乘机是一个完全平方数。输出对数。
任何一个整数n都可以这样表示: n=(p^2)*k; p是一个素数或者是1
例如n=1 2 3的时候可以表示成:1=(1^2)*1; 2=(1^2)*2; 3=(1^2)*3;
a1=(p^2)*k1; a2=(q^2)*k2;
if(k1==k2){
a1*a2的积一定是一个完全平方数
}//原理
code:
#include <stdio.h> #include <string.h> bool prime(int x) { for(int i=2; i*i<=x; i++){ if(x%i==0) return false; } return true; //判断素数 } int a[1000], cnt[1000000+10]; int main() { //将100万以内的"素数的完全平方数"打表 int e=0; for(int i=2; i*i<=1000000; i++){ if(prime(i)) a[e++]=i*i; } int tg; scanf("%d", &tg); int n, i, j; while(tg--) { scanf("%d", &n); int dd; int mm=1; memset(cnt,0,sizeof(cnt)); while(n--){ scanf("%d", &dd); for(i=0; i<e&&a[i]<=dd; i++){ while(dd%a[i]==0) dd/=a[i]; } if(dd>mm) mm=dd; cnt[dd]++; } long long ans=0; for(j=1; j<=mm; j++){ ans+=(cnt[j]*(cnt[j]-1)/2); } printf("%lld ", ans); } }