zoukankan      html  css  js  c++  java
  • YOLO(You Only Look Once):Real-Time Object Detection

    caffe-yolo:https://github.com/xingwangsfu/caffe-yolo

    YOLO in caffe

    Update 12-05-2016: Currently, only yolo v1 (http://pjreddie.com/darknet/yolov1/) is supported. Yolo V2 (http://pjreddie.com/darknet/yolo/) is not supported. Batch norm layer is supported.

    Introduction

    This is a caffe implementation of the YOLO:Real-Time Object Detection

    Note, the caffe models are not trained in caffe, but converted from darknet's (.weight) files (http://pjreddie.com/darknet/yolov1/).

    The converter is consisted of four steps:

    • create .prototxt files for caffe from .cfg file in darkent
    • initialize the caffe network and weights from .prototxt file
    • read the weights from pre-trained darknet's (.weight) file
    • replace the initialized weights with the weights in pre-trained darkenet's (.weight) file

    Usage

    • run "create_yolo_prototxt.py" to create .prototxt files
    • run "create_yolo_caffemodel.py" to create .caffemodel files
    • run "yolo_main.py" to call yolo in caffe

    Convert yolo's (.weight) files to caffemodel

    • first, you need to download the pretrained yolo weight files (http://pjreddie.com/darknet/yolov1/) and .cfg files (https://github.com/pjreddie/darknet/tree/master/cfg/yolov1)

    • run create_yolo_prototxt.py to create .prototxt files

    • after that, run create_yolo_caffemodel.py to create the caffemodel from yolo's (.weight) files

      • "python create_yolo_caffemodel.py -m train_val_prototxt.filename -w yoloweights_filename -o caffemodel_filename"

      replace train_val_prototxt.filename with /your/path/to/yolo_train_val.prototxt (yolo_small, yolo_tiny), yoloweights_filename with /your/path/to/yolo.weights (yolo-small, yolo-tiny), and caffemodel_filename with your output caffemodel name,

      e.g. "python create_yolo_caffemodel.py -m yolo_train_val.prototxt -w yolo.weights -o yolo.caffemodel"

    Main file usage

    run yolo_main.py to do yolo object detection for the input image

    • "python yolo_main.py -m model_filename -w weight_filename -i image_filename"

    replace model_filename with /your/path/to/yolo_small_deploy.prototxt or yolo_tiny_deploy.prototxt, weight_filename with /your/path/to/yolo_tiny.caffemodel or yolo_small.caffemodel and image_filename with the target image file

    Requirements

    • Caffe, pycaffe

    • Opencv2

    Copyrights

    According to the LICENSE file of the original code,

    • Me and original author hold no liability for any damages

    • Do not use this on commercial!

  • 相关阅读:
    IO流上机作业
    数据结构堆排序
    数据结构实训报告
    字符串的基本操作
    java窗口的简单切换
    判断一个串B位于串A的位置
    c语言实现数组转置,加减,乘法运算
    java异常处理
    弹奏乐器
    课程总结
  • 原文地址:https://www.cnblogs.com/ystwyfe/p/7942953.html
Copyright © 2011-2022 走看看