zoukankan      html  css  js  c++  java
  • 模型评估

     1 # -*- coding: utf-8 -*-
     2 """
     3 Created on Thu Sep 27 16:24:29 2018
     4     模型及预测准确度评估
     5 @author: zhen
     6 """
     7 
     8 from sklearn import metrics
     9 
    10 if __name__ == "__main__":
    11     
    12     # 同一性homogeneity:每个群集只包含单个类的成员。 
    13     # 完整性completeness:给定类的所有成员都分配给同一个群集。
    14     # 调和平均V-measure
    15     y = [0, 0, 0, 1, 1, 1]
    16     y_hat = [0, 0, 1, 1, 2, 2]
    17     h = metrics.homogeneity_score(y, y_hat)
    18     c = metrics.completeness_score(y, y_hat)
    19         
    20     v2 = 2 * c * h / (c + h)
    21     v = metrics.v_measure_score(y, y_hat)
    22     print(u'同一性(Homogeneity):', h)
    23     print(u'完整性(Completeness):', c)
    24     print(u'V_Measure:', v2, v)
    25     
    26     y = [0, 0, 0, 1, 1, 1]
    27     y_hat = [0, 0, 1, 3, 3, 3]
    28     h = metrics.homogeneity_score(y, y_hat)
    29     c = metrics.completeness_score(y, y_hat)
    30     v = metrics.v_measure_score(y, y_hat)
    31     
    32     print(u'同一性(Homogeneity):', h)
    33     print(u'完整性(Completeness):', c)
    34     print(u'V_Measure:', v)
    35     
    36     # 允许不同值
    37     y = [0, 0, 0, 1, 1, 1]
    38     y_hat = [1, 1, 1, 0, 0, 0]
    39     h = metrics.homogeneity_score(y, y_hat)
    40     c = metrics.completeness_score(y, y_hat)
    41     v = metrics.v_measure_score(y, y_hat)
    42     
    43     print(u'同一性(Homogeneity):', h)
    44     print(u'完整性(Completeness):', c)
    45     print(u'V_Measure:', v)
    46     
    47     # 兰德指数
    48     # ARI值的范围是[-1,1],负的结果都是较差的,越接近-1表示聚类越差,
    49     # 正的结果都是较好的,1是最佳结果,越接近1表示聚类结果越好。
    50     y = [0, 0, 1, 1]
    51     y_hat = [0, 1, 0, 1]
    52     ari = metrics.adjusted_rand_score(y, y_hat)
    53     print("兰德指数:", ari)
    54     
    55     y = [0, 0, 0, 1, 1, 1]
    56     y_hat = [0, 0, 1, 1, 2, 2]
    57     ari = metrics.adjusted_rand_score(y, y_hat)
    58     print("兰德指数:", ari)
    59     

    结果:

  • 相关阅读:
    spring3: Bean的命名与Bean的实例化
    极客软件测试52讲总结分享
    如何有效地搭建测试环境?
    用xshell 连接docker Linux服务器
    python+requests+excel+unittest+ddt接口自动化数据驱动并生成html报告
    CI持续集成系统环境--Gitlab+Gerrit+Jenkins完整对接
    jenkins 关联 钉钉机器人
    Jenkins pipeline 语法详解
    jenkins 添加 证书凭证Credentials
    项目中使用的S2SH整合中使用的struts.xml(参考模板)
  • 原文地址:https://www.cnblogs.com/yszd/p/9719946.html
Copyright © 2011-2022 走看看