上午
考试
下午
讲题讲课
以下有的东西是粘的
同余定理
若(a \% b == c \% b), 我们称之为(aequiv c (mod b))
在四则运算中,我们需要知道
在做题时,我们经常会遇到对一个数取模的运算
我们需要知道
((a+b)\%c=((a\%c)+(b\%c))\%c)
((a-b)\%c=(((a-b)\%c)+c)\%c)
((a imes b)\%c=((a\%c) imes(b\%c))\%c)
对于除法的处理参见下面的逆元
回归正题
快速幂的作用就是以(O(log{b}))的时间复杂度解决(a^b\%c)的问题
正常暴力的话我们只能(O(b))
这里用到的是二分的思想
根据上面的同余定理,显然我们可以将问题二分
LL ksm(LL a, LL n, int c) {
if (n == 0) return 1;
if (n & 1) return (LL)ksm(a, n - 1, c) * a % c;
int res = ksm(a, n >> 1, c);
return (LL)res * res % c;
}
上面的是递归式的,我们也有非递归式的
不妨换个角度思考一下
我们把指数换成二进制
比如我们求(7^{10})
在二进制的角度,也就是(7^{(1010)_2})
所以呢,我们很自然的联想到把它拆分成(7^{(1000)2})和(7^{(10)2})
将上面的方法推广,所有的这样的问题我们都可以将指数拆开,分开计算
这样我们需要指数的二进制的每一位,因此,复杂度同上
下面的快速幂也是最常用的快速幂
LL ksm(LL a, LL b, int mod) {
LL res = 1LL;
while(b) {
if(b & 1) res = (LL)res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
逆元
由费马小定理
(a^pequiv a (mod p))
(a^{p-1}equiv 1 (mod p))
(a imes a^{p-2}equiv 1 (mod p))
(a^{p-2}equiv frac{1}{a} (mod p))
因此,a在模c意义下的乘法逆元为(ksm(a, c - 2, c))
还有一种(O(n))线性求逆元的方法
推荐记住推导过程,当然要是直接记住结论也没问题
对于(i)在mod p意义下的逆元,我们可以
令(a=frac p i, b=p \% i)
显然p可以表示为(i imes a + b)
于是,(i imes a + b equiv 0 (mod p))
(i imes a equiv -b (mod p))
(i^{-1} equiv -frac a b (mod p))
于是,i的逆元就是(-a imes b^{-1})
即(-frac p i imes (p\%i)^{-1})
可能你会问,那(p\%i)的逆元咋求,用ksm的结论吗?
不难发现,(p \% i)肯定比当前的i要小,因此我们再求i的逆元的时候(p\%i)的逆元是已知的!
void mutl(int mod) {
inv[1] = 1;
for(int i = 2; i <= M; i++)
inv[i] = (((mod-mod/i)*inv[mod % i])%mod+mod)%mod;
}
慢速乘(龟速乘)
感觉比较简单 直接贴代码吧
LL msc(LL a, LL b, LL c) {
LL ans = 0;
while(b) {
if(b & 1) ans = (ans + a) % c;
a = (a + a) % c;
b >>= 1;
}
return ans;
}
矩阵加速
比如,以斐波那契数列为例
(f[n] = f[n - 1] + f[n - 2])
不妨构造矩阵
(left[egin{matrix}
f[n] & f[n + 1] & f[n + 2]
0 & 0 & 0
0 & 0 & 0
end{matrix}
ight])
如果我们称上面的矩阵为第n个矩阵
那么显然第一个矩阵就是
(left[egin{matrix}
f[1] & f[2] & f[3]
0 & 0 & 0
0 & 0 & 0
end{matrix}
ight])
也即
(left[egin{matrix}
1 & 1 & 2
0 & 0 & 0
0 & 0 & 0
end{matrix}
ight])
我们现在的任务便是构造一个矩阵B,使得
(left[egin{matrix}
f[n] & f[n + 1] & f[n + 2]
0 & 0 & 0
0 & 0 & 0
end{matrix}
ight] imes B =
left[egin{matrix}
f[n + 1] & f[n + 2] & f[n + 3]
0 & 0 & 0
0 & 0 & 0
end{matrix}
ight]
)
根据矩阵乘法的方式,我们成功获得矩阵B
(left[egin{matrix}
0 & 0 & 0
1 & 0 & 1
0 & 1 & 1
end{matrix}
ight])
贴上代码
struct matrix {
LL a[3][3];
matrix() {
for(int i = 0; i <= 2; i++)
for(int j = 0; j <= 2; j++)
a[i][j] = 0;
}
friend matrix operator * (const matrix &b, const matrix &c) {
matrix d;
for(int i = 0; i <= 2; i++)
for(int j = 0; j <= 2; j++)
for(int k = 0; k <= 2; k++)
(d.a[i][j] += ((LL)b.a[i][k] * c.a[k][j])) %= mod;
return d;
}
void rec() {
for(int i = 0; i <= 2; i++)
for(int j = 0; j <= 2; j++)
this->a[i][j] = (i == j);
}
matrix ksm(LL t) {
matrix c;
c.rec();
while(t) {
if(t & 1LL) c = c * (*this);
(*this) = (*this) * (*this);
t >>= 1LL;
}
return *this = c;
}
}A, B;
int main() {
A.a[1][0] = A.a[2][1] = A.a[2][2] = A.a[1][2] = 1LL;
B.a[0][0] = B.a[0][1] = 1;
B.a[0][2] = 2;
printf("%lld
", (B * A.ksm(in() - 1)).a[0][0]);
return 0;
}
STL
一大堆东西 (queue,vector,map,set,priority_queue)
都是基操,虽然可能大概有的我还不会.....
甩甩链接:
关于迭代器的使用:
for(STL::iterator it = STL.begin(); it != STL.end(); it++)
卡特兰数
公式:(C_{2n}^{n} - C_{2n}^{n-1})
可以推出来:(dfrac {C_{2n}^{n}} {n+1})
这玩意应用多
通过一群数的进zhan出zhan顺序可以得到,设(h[i])表示以(i)为结尾的数的总出栈方案
显然(h[i] = sum {h[j-1]*h[i-(j+1)-1]}) 其中 (1 leq j leq i)
晚上
改题
写个线段树维护一下标记,其中,如果一个数被干了五次以上,就为1了
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 5e5+66;
int n, m;
int a[N], b[N<<2], d[N<<2];
inline void build (int s, int t, int p) {
if (s == t) {
d[p] = a[s];
b[p] = a[s];
return;
}
int m = (s + t) >> 1;
build (s, m, p<<1), build (m+1, t, (p<<1)|1);
d[p] = d[p<<1] + d[(p<<1)|1];
b[p] = max(b[p<<1], b[(p<<1)|1]);
}
inline void update (int l, int r, int s, int t, int p) {
if (s == t) {
d[p] = sqrt(d[p]);
b[p] = sqrt(b[p]);
return;
}
if (b[p] <= 1) return;
int m = (s + t) >> 1;
if (l <= m) update (l, r, s, m, p<<1);
if (r > m) update (l, r, m+1, t, (p<<1)|1);
d[p] = (d[p<<1] + d[(p<<1)|1]);
b[p] = max(b[p<<1], b[(p<<1)|1]);
}
inline int getsum (int l, int r, int s, int t, int p) {
if (l <= s && t <= r) return d[p];
int m = (s + t) >> 1, sum = 0;
if (l <= m) sum += getsum (l, r, s, m, p<<1);
if (r > m) sum += getsum (l, r, m+1, t, (p<<1)|1);
return sum;
}
signed main () {
scanf ("%lld", &n);
for (int i = 1; i <= n; ++ i)
scanf ("%lld", &a[i]);
build (1, n, 1);
cin >> m;
for (int i = 1; i <= m; ++ i) {
int opt, x, y;
cin >> opt >> x >> y;
if (x > y) swap(x, y);
if (opt == 0) update (x, y, 1, n, 1);
else cout << getsum (x, y, 1, n, 1) << '
';
}
return 0;
}
别人一眼(dp),我也一眼(dp),但是别人写(dp),我却在写搜索,全(T)了....
我们设(f[i][j])为到达(i,j)这个点所能获得的最大价值
显然:(f[i][j] = max(f[i-1][k] + val[i][j])其中(j-t leq k leq j+t)
显然:我们只需要在(i)的上一层,维护一个长度为(2*t)的滑动窗口就可以了
#include <bits/stdc++.h>
using namespace std;
const int N = 4e3+66;
int n, m, k, t;
int head = 1, tail = 0, res;
int f[N][N], q[N], a[N][N];
inline void calc(int x) {
for (int i = 1; i <= t; ++ i) {
while (f[x][i] > f[x][q[tail]] && tail >= head)
-- tail;
q[++tail] = i;
}
}
inline void Insert(int x, int last) {
if (x+t <= m) {
while (f[last][x+t]>f[last][q[tail]] && tail >= head)
-- tail;
q[++tail] = x+t;
}
while (q[head]+t < x) ++ head;
}
int main () {
cin >> n >> m >> k >> t;
for (int i = 1; i <= k; ++ i) {
int x, y, v;
cin >> x >> y >> v;
a[x][y] = v;
}
for (int i = 1; i <= n; ++ i) f[1][i] = a[1][i];
for (int i = 2; i <= n; ++ i) {
calc(i-1);
for (int j = 1; j <= m; ++ j){
Insert(j, i-1);
f[i][j] = f[i - 1][q[head]]+a[i][j];
}
head = 1, tail = 0;
}
for (int i = 1; i <= m; ++ i) res = (res<f[n][i])?f[n][i]:res;
cout << res;
return 0;
}
一群操蛋的奶牛https://www.luogu.com.cn/problem/P2344
不会
埋个坑
日后补
(7.28update)
正解是维护前缀和与树状数组
我写了个搜索在某谷就过去了,但是HEZG给的数据过不去
某谷数据太水了!!!
给出能在某谷AC的代码
#include <bits/stdc++.h>
using namespace std;
priority_queue<int, vector<int>, greater<int> >q;
const int N = 1e5+66, mod = 1e9+9;
int n, m, res;
int yhm[N], a[N];
bool v[N];
inline void xieruyijichushihua() {
yhm[0] = 1;
cin >> n;
for (int i = 1; i <= n; ++ i) cin >> a[i];
}
inline void jiejuewenti() {
q.push(0);
while (q.size()) {
int now = q.top(); q.pop();
res = 0;
for (int i = now+1; i <= n; ++ i) {
res += a[i];
if (res >= 0) {
yhm[i] += yhm[now];
yhm[i] %= mod;
if (!v[i]) q.push(i), v[i] = 1;
}
}
}
}
int main () {
xieruyijichushihua();
jiejuewenti();
cout << yhm[n];
return 0;
}
写入以及初始化:(xieruyijichushihua)
解决问题:(jiejuewenti)
拿了五十分,准备拍拍屁股走人