zoukankan      html  css  js  c++  java
  • 二叉树遍历操作

    二叉树的简单实现,包含元素插入,主要是前序,中序,后序,层序遍历。最后根据二叉树的前序和中序遍历的数组,先还原二叉树,然后输出其后序遍历的数组

    // 二叉树
    import java.util.LinkedList;
    import java.util.Queue;
    
    public class BinaryTree {
    
        private Node root;
    
        public BinaryTree() {
            this.root = null;
        }
    
        /**
         * 插入数据到二叉树
         * 
         * @param data
         */
        public void insert(int data) {
            Node newNode = new Node(data);
    
            if (root == null)
                root = newNode;
            else {
                Node cur = root;
                Node parent;
                // 找插入的位置
                while (true) {
                    parent = cur;
                    if (data < cur.data) {
                        cur = cur.left;
                        if (cur == null) {
                            parent.left = newNode;
                            return;
                        }
                    } else {
                        cur = cur.right;
                        if (cur == null) {
                            parent.right = newNode;
                            return;
                        }
                    }
                }
            }
        }
    
        public void buildTree(int arr[]) {
    
            for (int i = 0; i < arr.length; i++)
                this.insert(arr[i]);
        }
    
        /**
         * 前序遍历二叉树
         */
        public void preOrder() {
            this.preOrder(this.root);
        }
    
        private void preOrder(Node localRoot) {
    
            if (localRoot != null) {
                System.out.print(localRoot.data + " ");
                this.preOrder(localRoot.left);
                this.preOrder(localRoot.right);
            }
        }
    
        /**
         * 中序遍历二叉树
         */
        public void inOrder() {
            this.inOrder(this.root);
        }
    
        private void inOrder(Node localRoot) {
    
            if (localRoot != null) {
                this.inOrder(localRoot.left);
                System.out.print(localRoot.data + " ");
                this.inOrder(localRoot.right);
            }
        }
    
        /**
         * 后序遍历二叉树
         */
        public void postOrder() {
            this.postOrder(this.root);
        }
    
        private void postOrder(Node localRoot) {
    
            if (localRoot != null) {
                this.postOrder(localRoot.left);
                this.postOrder(localRoot.right);
                System.out.print(localRoot.data + " ");
            }
    
        }
    
        /**
         * 层序遍历二叉树
         */
        public void layerOrder() {
    
            if (this.root == null)
                return;
    
            Queue<Node> q = new LinkedList<>();
            q.add(root);
    
            while (!q.isEmpty()) {
                Node node = q.poll();
                System.out.print(node.data);
                System.out.print(" ");
                if (node.left != null)
                    q.add(node.left);
                if (node.right != null)
                    q.add(node.right);
            }
        }
    
        class Node {
            int data;
            Node left;
            Node right;
    
            public Node(int data) {
                this.data = data;
                this.left = null;
                this.right = null;
            }
        }
    
        /**
         * 根据前序遍历和中序遍历构建二叉树
         * 
         * @param preOrder
         * @param inOrder
         */
        public void initTree(int[] preOrder, int[] inOrder) {
    
            this.root = this.initTree(preOrder, 0, preOrder.length - 1, inOrder, 0, inOrder.length - 1);
        }
    
        private Node initTree(int[] preOrder, int preStart, int preEnd, int[] inOrder, int inStart, int inEnd) {
    
            if (preStart > preEnd || inStart > inEnd)
                return null;
            // 前序遍历的第一个元素是二叉树的根节点
            int rootData = preOrder[preStart];
    
            Node head = new Node(rootData);
    
            // 在中序遍历找到根节点的位置
            int rootIndexInOrder = findIndexInArray(inOrder, rootData, inStart, inEnd);
            // 在中序遍历中左子树的偏移量 [inStrat,offSet]闭区间
            int offSet = rootIndexInOrder - inStart - 1;
    
            // 构建左子树
            Node left = initTree(preOrder, preStart + 1, preStart + offSet + 1, inOrder, inStart, inStart + offSet);
    
            // 构建右子树
            Node right = initTree(preOrder, preStart + offSet + 2, preEnd, inOrder, rootIndexInOrder + 1, inEnd);
    
            head.left = left;
            head.right = right;
            return head;
    
        }
    
        /**
         * // 在中序遍历找到根节点的位置
         * 
         * @param inOrder  中序遍历数组
         * @param rootData 根节点的数据
         * @param inStart  开始查找的位置
         * @param inEnd    结束查找的位置
         * @return
         */
        private int findIndexInArray(int[] inOrder, int rootData, int inStart, int inEnd) {
            if (inStart > inEnd)
                return -1;
            for (int i = inStart; i <= inEnd; i++) {
                if (inOrder[i] == rootData)
                    return i;
            }
            return -1;
        }
    
        public static void main(String[] args) {
            int pre[] = { 1, 2, 4, 8, 9, 5, 10, 3, 6, 7 };
            int in[] = { 8, 4, 9, 2, 10, 5, 1, 6, 3, 7 };
    
            BinaryTree bin = new BinaryTree();
            bin.initTree(pre, in);
    
    //        System.out.println("前序:");
    //        bin.preOrder();
    //        System.out.println("
    " + "中序:");
    //        bin.inOrder();
            System.out.println("
    " + "后序:");
            bin.postOrder();
    //        System.out.println("
    " + "层序序:");
    //        bin.layerOrder();
        }
    
    }
    View Code
  • 相关阅读:
    python之----------字符编码具体原理
    python ---------函数
    python爬虫
    python str 与repr区别
    python 正则表达式
    python 正则表达式里使用 split()方法
    python 基础介绍
    python 数据类型--列表
    python 字符串操作
    django(1.6)操作自带的数据库
  • 原文地址:https://www.cnblogs.com/ytuan996/p/10679312.html
Copyright © 2011-2022 走看看