zoukankan      html  css  js  c++  java
  • 洛谷P3045 [USACO12FEB]牛券Cow Coupons

    题目:洛谷P3045 [USACO12FEB]牛券Cow Coupons

    思路:

    贪心

    假设先用完所有优惠券,则只有两种决策:以原价购买未选物品中价格最低的;以最低代价退回当前用的一张优惠券,再以优惠价购买未选物品中优惠价最低的。

    回退(反悔)操作可以用堆实现,具体实现:

    用三个小根堆h1、h2、h3,分别存储未选物品的原价及编号、未选物品的优惠价及编号、已选物品退回优惠券的代价。

    每次比较三个堆的堆顶t1、t2、t3,若当前花费加上min(t1,t2+t3)超过m就break,否则选择两种决策中花费较小的并弹掉堆顶。用bool数组记录每个物品是否被选过。

    为了方便实现,最初可以在h3中加入k个0。


    Code:

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    typedef pair<ll, int> node;
    const int N = 1e5 + 5;
    priority_queue< node, vector<node>, greater<node> > h1, h2;
    priority_queue< ll, vector<ll>, greater<ll> > h3;
    ll n, k, m, cnt, sum, p[N], c[N];
    bool mark[N];
    inline void In(ll &num) {
    	register char c = getchar();
    	for(num = 0; !isdigit(c); c = getchar());
    	for(; isdigit(c); num = num * 10 + c - 48, c = getchar());
    }
    int main() {
    	In(n); In(k); In(m);
    	for(int i = 1; i <= n; ++i) {
    		In(p[i]); In(c[i]);
    		h1.push(make_pair(p[i], i));
    		h2.push(make_pair(c[i], i));
    	}
    	for(int i = 1; i <= k; ++i) h3.push(0ll);
    	while(!h1.empty()) {
    		node t1 = h1.top(), t2 = h2.top();
    		ll t3 = h3.top();
    		if(mark[t1.second]) {
    			h1.pop();
    			continue;
    		}
    		if(mark[t2.second]) {
    			h2.pop();
    			continue;
    		}
    		if(t1.first < t2.first + t3) {
    			if(sum + t1.first > m) break;
    			++cnt;
    			h1.pop();
    			sum += t1.first;
    			mark[t1.second] = true;
    		} else {
    			if(sum + t2.first + t3 > m) break;
    			++cnt;
    			h2.pop();
    			h3.pop();
    			sum += t2.first + t3;
    			mark[t2.second] = true;
    			h3.push(p[t2.second] - c[t2.second]);
    		}
    	}
    	printf("%lld
    ", cnt);
    	return 0;
    }
    
  • 相关阅读:
    猜数字游戏
    Visual Studio Code如何编写运行C、C++
    Git Submodule使用完整教程
    同一客户端多个git账号的配置
    让 Git Bisect 帮助你
    GitHub 风格的 Markdown 语法
    git 命令图解
    图解git中的最常用命令
    Understanding the Bias-Variance Tradeoff
    Seven Techniques for Data Dimensionality Reduction
  • 原文地址:https://www.cnblogs.com/yu-xing/p/11519717.html
Copyright © 2011-2022 走看看