zoukankan      html  css  js  c++  java
  • CF 788A Functions again (dp)

    A. Functions again
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Something happened in Uzhlyandia again... There are riots on the streets... Famous Uzhlyandian superheroes Shean the Sheep and Stas the Giraffe were called in order to save the situation. Upon the arriving, they found that citizens are worried about maximum values of the Main Uzhlyandian Function f, which is defined as follows:

    In the above formula, 1 ≤ l < r ≤ n must hold, where n is the size of the Main Uzhlyandian Array a, and |x| means absolute value of x. But the heroes skipped their math lessons in school, so they asked you for help. Help them calculate the maximum value of f among all possible values of l and r for the given array a.

    Input

    The first line contains single integer n (2 ≤ n ≤ 105) — the size of the array a.

    The second line contains n integers a1, a2, ..., an (-109 ≤ ai ≤ 109) — the array elements.

    Output

    Print the only integer — the maximum value of f.

    Examples
    input
    5
    1 4 2 3 1
    output
    3
    input
    4
    1 5 4 7
    output
    6
    Note

    In the first sample case, the optimal value of f is reached on intervals [1, 2] and [2, 5].

    In the second case maximal value of f is reachable only on the whole array.

    #include <algorithm>
    #include <iostream>
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    typedef long long LL;
    const LL N = 1e5 + 10;
    LL num[N], dp1[N], dp2[N];
    int main()
    {
        LL n, m, i;
        cin >> n;
        for(i = 1; i <= n; i++) {
            scanf("%lld", &num[i]);
            if(i > 1)
                dp2[i - 1] = dp1[i - 1] = abs(num[i] - num[i - 1]);
        }
        for(i = 1; i < n; i++) {
            if(i % 2 == 0)
                dp1[i] *= -1;
            else
                dp2[i] *= -1;
        }
        LL sum = 0, ans = dp1[1];
        for(i = 1; i < n; i++) {
            sum += dp1[i];
            if(sum < 0)
                sum = 0;
            else if(sum > ans)
                ans = sum;
        }
        sum = 0;
        for(i = 1; i < n; i++) {
            sum += dp2[i];
            if(sum < 0)
                sum = 0;
            else if(sum > ans)
                ans = sum;
        }
        printf("%lld
    ", ans);
        return 0;
    }
  • 相关阅读:
    hdu.1226.超级密码(bfs)
    zstu.2512. Moving Tables(贪心)
    zoj.3868.GCD Expectation(数学推导>>容斥原理)
    acdream.LCM Challenge(数学推导)
    acdream.Triangles(数学推导)
    acdream.A Very Easy Triangle Counting Game(数学推导)
    acdream.Bet(数学推导)
    acdream.郭式树(数学推导)
    EntityFramework(转自wiki)
    石墨烯(转自wiki)
  • 原文地址:https://www.cnblogs.com/yu0111/p/6734997.html
Copyright © 2011-2022 走看看