zoukankan      html  css  js  c++  java
  • 20172332 2017-2018-2 《程序设计与数据结构》实验三报告

    20172332 2017-2018-2 《程序设计与数据结构》实验三报告

    课程:《程序设计与数据结构》
    班级: 1723
    姓名: 于欣月
    学号:20172332
    实验教师:王志强
    实验日期:2018年11月20日
    必修/选修: 必修

    1.实验内容

    • 查找与排序-1
    • 定义一个Searching和Sorting类,并在类中实现linearSearch(教材P162 ),SelectionSort方法(P169),最后完成测试。
      要求不少于10个测试用例,提交测试用例设计情况(正常,异常,边界,正序,逆序),用例数据中要包含自己学号的后四位
      提交运行结果图。
    • 查找与排序-2
    • 重构你的代码
      把Sorting.java Searching.java放入 cn.edu.besti.cs1723.(姓名首字母+四位学号) 包中(例如:cn.edu.besti.cs1723.G2301)
      把测试代码放test包中
      重新编译,运行代码,提交编译,运行的截图(IDEA,命令行两种)
    • 查找与排序-3
    • 参考http://www.cnblogs.com/maybe2030/p/4715035.html 在Searching中补充查找算法并测试
      提交运行结果截图
    • 查找与排序-4
    • 补充实现课上讲过的排序方法:希尔排序,堆排序,二叉树排序等(至少3个)
      测试实现的算法(正常,异常,边界)
      提交运行结果截图
      (3分,如果编写多个排序算法,即使其中三个排序程序有瑕疵,也可以酌情得满分)
    • 查找与排序-5(选做,加分)
    • 编写Android程序对各种查找与排序算法进行测试
      提交运行结果截图
      推送代码到码云
      (加分3,加到实验中)

    2. 实验过程及结果

    前期准备:

    • 1.了解多种查找方法与排序方法的原理及实现

    过程:

    • 1.实验一
      • 关键代码:
    public static <T> boolean linearSearch(T[] data, int min, int max, T target) {
            int index = min;
            boolean found = false;
    
            while (!found && index <= max) {
                found = data[index].equals(target);
                index++;
            }
    
            return found;
        }
    
    //线性查找
    public static <T> boolean linearSearch(T[] data, int min, int max, T target) {
            int index = min;
            boolean found = false;
    
            while (!found && index <= max) {
                found = data[index].equals(target);
                index++;
            }
    
            return found;
        }
    
    //选择排序
    public static <T extends Comparable<T>>
    		String selectionSort(T[] data)
        {
            int min;
            T temp;
    
            for (int index = 0; index < data.length-1; index++)
            {
                min = index;
                for (int scan = index+1; scan < data.length; scan++)
                    if (data[scan].compareTo(data[min])<0)
                        min = scan;
    
                swap(data, min, index);
            }
            String res = "";
            for(int i = 0;i<data.length;i++)
            	res += data[i]+",";
            return res;
        }
    
    - 实验结果:
    

    • 2.实验二
      • 关键代码:
        与实验一相同。
      • 实验结果:

    • 3.实验三
      • 关键代码:
        /**
         * Searches the specified array of objects using a binary search
         * algorithm.
         *
         * @param data   the array to be searched
         * @param min    the integer representation of the minimum value
         * @param max    the integer representation of the maximum value
         * @param target the element being searched for
         * @return true if the desired element is found
         */
        //二分查找
        public static <T extends Comparable<T>> boolean binarySearch(T[] data, int min, int max, T target) {
            boolean found = false;
            int midpoint = (min + max) / 2;  // determine the midpoint
    
            if (data[midpoint].compareTo(target) == 0)
                found = true;
    
            else if (data[midpoint].compareTo(target) > 0) {
                if (min <= midpoint - 1)
                    found = binarySearch(data, min, midpoint - 1, target);
            } else if (midpoint + 1 <= max)
                found = binarySearch(data, midpoint + 1, max, target);
    
            return found;
        }
    
        //顺序查找
        public static int SequenceSearch(int a[], int value, int n) {
            int i;
            for (i = 0; i < n; i++)
                if (a[i] == value)
                    return i;
            return -1;
        }
    
        //二分查找两个版本
        public static int BinarySearch1(int a[], int value, int n) {
            int low, high, mid;
            low = 0;
            high = n - 1;
            while (low <= high) {
                mid = (low + high) / 2;
                if (a[mid] == value)
                    return mid;
                if (a[mid] > value)
                    high = mid - 1;
                if (a[mid] < value)
                    low = mid + 1;
            }
            return -1;
        }
    
        //二分查找,递归版本
        public static int BinarySearch2(int a[], int value, int low, int high) {
            if (high < low)
                return -1;
            int mid = low + (high - low) / 2;
            if (a[mid] == value)
                return mid;
            else if (a[mid] > value)
                return BinarySearch2(a, value, low, mid - 1);
            else if (a[mid] < value)
                return BinarySearch2(a, value, mid + 1, high);
            else
                return -1;
        }
    
        //插值查找
        public static int InsertionSearch(int[] data, int target, int min, int max) {
            if (min == max)
                return -1;
            int mid = min + (target - data[min]) / (data[max] - data[min]) * (max - min);
            if (data[mid] == target)
                return mid;
            else if (data[mid] > target)
                return InsertionSearch(data, target, min, mid - 1);
            else if (data[mid] < target)
                return InsertionSearch(data, target, mid + 1, max);
            else
                return -1;
        }
    
        //斐波那契查找
        private static int[] fibonacci() {
            int[] f = new int[10];
            f[0] = 0;
            f[1] = 1;
            for (int i = 2; i < f.length; i++) {
                f[i] = f[i - 1] + f[i - 2];
            }
            return f;
        }
    
        public static int fibonacciSearch(int[] data, int key) {
            int low = 0;
            int high = data.length - 1;
            int mid = 0;
            // 斐波那契分割数值下标
            int k = 0;
            // 序列元素个数
            int i = 0;
            // 获取斐波那契数列
            int[] f = fibonacci();
            // 获取斐波那契分割数值下标
            while (data.length > f[k] - 1) {
                k++;
            }
    
            // 创建临时数组
            int[] temp = new int[f[k] - 1];
            for (int j = 0; j < data.length; j++)
                temp[j] = data[j];
    
            // 序列补充至f[k]个元素
            // 补充的元素值为最后一个元素的值
            for (i = data.length; i < f[k] - 1; i++) {
                temp[i] = temp[high];
            }
    
            while (low <= high) {
                // low:起始位置
                // 前半部分有f[k-1]个元素,由于下标从0开始
                // 则-1 获取 黄金分割位置元素的下标
                mid = low + f[k - 1] - 1;
    
                if (temp[mid] > key) {
                    // 查找前半部分,高位指针移动
                    // (全部元素) = (前半部分)+(后半部分)
                    // f[k] = f[k-1] + f[k-1]
                    // 因为前半部分有f[k-1]个元素,所以 k = k-1
                    high = mid - 1;
                    k = k - 1;
    
                } else if (temp[mid] < key) {
                    // 查找后半部分,高位指针移动
                    // (全部元素) = (前半部分)+(后半部分)
                    // f[k] = f[k-1] + f[k-1]
                    // 因为后半部分有f[k-1]个元素,所以 k = k-2
                    low = mid + 1;
                    k = k - 2;
                } else {
                    // 如果为真则找到相应的位置
                    if (mid <= high) {
                        return mid;
                    } else {
                        // 出现这种情况是查找到补充的元素
                        // 而补充的元素与high位置的元素一样
                        return high;
                    }
                }
            }
            return -1;
        }
    
        public static int treeSearch(int[] arr, int key) {
            LinkedBinarySearchTree tree = new LinkedBinarySearchTree();
            for (int a = 0; a < arr.length; a++) {
                tree.addElement(arr[a]);
            }
            if (tree.find(key) != null)
                return (int) tree.find(key);
            else
                throw new ElementNotFoundException();
        }
    
        //分块查找
        //index代表索引数组,st2代表待查找数组,keytype代表要查找的元素,m代表每块大小
        public static int blocksearch(int[] index, int[] st2, int keytype, int m) {
            int i = linearSearch(index, 0, st2.length - 1, keytype);    //shunxunsearch函数返回值为带查找元素在第几块
            if (i >= 0) {
                int j = m * i;   //j为第i块的第一个元素下标
                int curlen = (i + 1) * m;
                while (j < curlen) {
                    if (st2[j] == keytype)
                        return j;
                    j++;
                }
            }
            return -1;
        }
    
        public static <T> int linearSearch(int[] data, int min, int max, int target) {
            int index = min;
    
            if (data[index] >= target)
                return 0;
            int i=1;
            while(i<data.length) {
                if((data[i-1]<target)&&(data[i]>target))
                    return i;
                else
                    i++;
            }
            return -1;
        }
    
        //哈希查找
        public static int hashSearch(int data[], int target) {
            HashMap<Integer, Integer> hashMap = new HashMap<>();
            for (int i = 0; i < data.length; i++)
                hashMap.put(Integer.hashCode(data[i]), data[i]);
    
            int key = Integer.hashCode(target);
            if (hashMap.containsKey(key))
                return hashMap.get(key);
    
            return -1;//找不到返回-1
        }
    
    - 实验结果:
    

    • 实验四
      • 关键代码:
    public static <T extends Comparable<T>>
    		String selectionSort(T[] data)
        {
            int min;
            T temp;
    
            for (int index = 0; index < data.length-1; index++)
            {
                min = index;
                for (int scan = index+1; scan < data.length; scan++)
                    if (data[scan].compareTo(data[min])<0)
                        min = scan;
    
                swap(data, min, index);
            }
            String res = "";
            for(int i = 0;i<data.length;i++)
            	res += data[i]+",";
            return res;
        }
    
    	/**
    	 * Swaps to elements in an array. Used by various sorting algorithms.
    	 *
    	 * @param data   the array in which the elements are swapped
    	 * @param index1 the index of the first element to be swapped
    	 * @param index2 the index of the second element to be swapped
    	 */
    	private static <T extends Comparable<T>> void swap(T[] data, int index1, int index2)
    	{
    		T temp = data[index1];
    		data[index1] = data[index2];
    		data[index2] = temp;
    	}
    	
        /**
         * Sorts the specified array of objects using an insertion
         * sort algorithm.
         *
         * @param data the array to be sorted
         */
        public static <T extends Comparable<T>> void insertionSort(T[] data)
        {
            for (int index = 1; index < data.length; index++)
            {
                T key = data[index];
                int position = index;
    
                // shift larger values to the right
                while (position > 0 && data[position-1].compareTo(key) > 0)
                {
                    data[position] = data[position-1];
                    position--;
                }
    
                data[position] = key;
            }
        }
    
        /**
         * Sorts the specified array of objects using a bubble sort
         * algorithm.
         *
         * @param data the array to be sorted
         */
        public static <T extends Comparable<T>> void bubbleSort(T[] data)
        {
            int position, scan;
            T temp;
    
            for (position =  data.length - 1; position >= 0; position--)
            {
                for (scan = 0; scan <= position - 1; scan++)
                {
                    if (data[scan].compareTo(data[scan+1]) > 0)
                        swap(data, scan, scan + 1);
                }
            }
        }
    
        /**
         * Sorts the specified array of objects using the merge sort
         * algorithm.
         *
         * @param data the array to be sorted
         */
    	public static <T extends Comparable<T>> void mergeSort(T[] data)
    	{
    		mergeSort(data, 0, data.length - 1);
    	}
    
        /**
    	 * Recursively sorts a range of objects in the specified array using the
    	 * merge sort algorithm.
         *
         * @param data the array to be sorted
         * @param min  the index of the first element
         * @param max  the index of the last element
         */
    	private static <T extends Comparable<T>> void mergeSort(T[] data, int min, int max)
    	{
    		if (min < max)
    		{
    			int mid = (min + max) / 2;
    			mergeSort(data, min, mid);
    			mergeSort(data, mid+1, max);
    			merge(data, min, mid, max);
    		}
    	}
    
    	/**
         * Merges two sorted subarrays of the specified array.
         *
         * @param data the array to be sorted
         * @param first the beginning index of the first subarray
         * @param mid the ending index fo the first subarray
         * @param last the ending index of the second subarray
         */
    	@SuppressWarnings("unchecked")
    	private static <T extends Comparable<T>> void merge(T[] data, int first, int mid, int last)
    	{
    		T[] temp = (T[])(new Comparable[data.length]);
    
    		int first1 = first, last1 = mid;  // endpoints of first subarray
    		int first2 = mid+1, last2 = last;  // endpoints of second subarray
    		int index = first1;  // next index open in temp array
    
    		//  Copy smaller item from each subarray into temp until one
    		//  of the subarrays is exhausted
    		while (first1 <= last1 && first2 <= last2)
    		{
    			if (data[first1].compareTo(data[first2]) < 0)
    			{
    				temp[index] = data[first1];
    				first1++;
    			}
    			else
    			{
    				temp[index] = data[first2];
    				first2++;
    			}
    			index++;
    		}
    
    		//  Copy remaining elements from first subarray, if any
    		while (first1 <= last1)
    		{
    			temp[index] = data[first1];
    			first1++;
    			index++;
    		}
    
    		//  Copy remaining elements from second subarray, if any
    		while (first2 <= last2)
    		{
    			temp[index] = data[first2];
    			first2++;
    			index++;
    		}
    
    		//  Copy merged data into original array
    		for (index = first; index <= last; index++)
    			data[index] = temp[index];
       }
    
    	/**
    	 * Sorts the specified array of objects using the quick sort algorithm.
    	 *
    	 * @param data the array to be sorted
    	 */
    	public static <T extends Comparable<T>> void quickSort(T[] data)
    	{
    		quickSort(data, 0, data.length - 1);
    	}
    
    	/**
    	 * Recursively sorts a range of objects in the specified array using the
    	 * quick sort algorithm.
    	 *
    	 * @param data the array to be sorted
    	 * @param min  the minimum index in the range to be sorted
    	 * @param max  the maximum index in the range to be sorted
    	 */
    	private static <T extends Comparable<T>> void quickSort(T[] data, int min, int max)
    	{
    		if (min < max)
    		{
    			// create partitions
    			int indexofpartition = partition(data, min, max);
    
    			// sort the left partition (lower values)
    			quickSort(data, min, indexofpartition - 1);
    
    			// sort the right partition (higher values)
    			quickSort(data, indexofpartition + 1, max);
    		}
    	}
    
    	/**
    	 * Used by the quick sort algorithm to find the partition.
    	 *
    	 * @param data the array to be sorted
    	 * @param min  the minimum index in the range to be sorted
    	 * @param max  the maximum index in the range to be sorted
    	 */
    	private static <T extends Comparable<T>> int partition(T[] data, int min, int max)
    	{
    		T partitionelement;
    		int left, right;
    		int middle = (min + max) / 2;
    
    		// use the middle data value as the partition element
    		partitionelement = data[middle];
    		// move it out of the way for now
    		swap(data, middle, min);
    
    		left = min;
    		right = max;
    
    		while (left < right)
    		{
    			// search for an element that is > the partition element
    			while (left < right && data[left].compareTo(partitionelement) <= 0)
    				left++;
    
    			// search for an element that is < the partition element
    			while (data[right].compareTo(partitionelement) > 0)
    				right--;
    
    			// swap the elements
    			if (left < right)
    				swap(data, left, right);
    		}
    
    		// move the partition element into place
    		swap(data, min, right);
    
    		return right;
    	}
    	public static String Xiersort(int[] arrays){
    		String res = "";
    		if(arrays == null || arrays.length <= 1){
    			return null;
    		}
    		//增量
    		int incrementNum = arrays.length/2;
    		while(incrementNum >=1){
    			for(int i=0;i<arrays.length;i++){
    				//进行插入排序
    				for(int j=i;j<arrays.length-incrementNum;j=j+incrementNum){
    					if(arrays[j]>arrays[j+incrementNum]){
    						int temple = arrays[j];
    						arrays[j] = arrays[j+incrementNum];
    						arrays[j+incrementNum] = temple;
    					}
    				}
    			}
    			//设置新的增量
    			incrementNum = incrementNum/2;
    		}
    		for (int i = 0;i<arrays.length;i++)
    			res+=arrays[i]+" ";
    		return res;
    	}
    
    public void heapSort() {
            int[] a = {2,4,1,9,3,23,32};
            assertEquals("1 2 3 4 9 23 32 ", HeapSort.HeapSort(a));
        }
    
        public static void main(String[] args) {
            int[] num = {5,1,0,9,7,36,24,15,23,32};
            LinkedBinarySearchTree a = new LinkedBinarySearchTree(num[0]);
            for(int i = 1;i<num.length;i++)
                a.addElement(num[i]);
            a.inOrder(a.root);
            System.out.println();
            Integer[] nu ={5,1,0,9,7,36,24,15,23,32};
            Sorting.quickSort(nu);
            for (int o = 0;o<nu.length;o++)
                System.out.print(nu[o]+" ");
            Sorting.insertionSort(nu);
            for (int o = 0;o<nu.length;o++)
                System.out.print(nu[o]+" ");
            Sorting.selectionSort(nu);
            for (int o = 0;o<nu.length;o++)
                System.out.print(nu[o]+" ");
            Sorting.bubbleSort(nu);
            for (int o = 0;o<nu.length;o++)
                System.out.print(nu[o]+" ");
            Sorting.mergeSort(nu);
            for (int o = 0;o<nu.length;o++)
                System.out.print(nu[o]+" ");
        }
    
    - 实验结果:
    








    • 实验五
      • 关键代码:
        基本与idea中的没变,只是加了布局文件。
      • 实验结果:
















    3. 实验过程中遇到的问题和解决过程

    • 问题1:

    • 问题1解决方案:T不兼容Comparable型,所以需要改为Integer型的数组。

    其他(感悟、思考等)

    • 我觉得这次的实验因为学完的太久了,所以有些方法不记得原理了,就又翻了一遍书,正好温习了一下。但是实验整体的难度并不大,原理都清楚就是代码实现的问题,需要花一些时间。

    参考资料

  • 相关阅读:
    OLAP、OLTP的介绍和比较
    Python发行版本Anaconda的安装说明:基于Anaconda2-4.3.1-Windows-x86_64
    Hive学习:Hive连接JOIN用例详解
    Linux学习一:图解CentOS 6.5安装步骤
    Linux学习二:基于CentOS 6.5的网络配置
    一个恒等式.jpg
    centos 7 The path "" is not a valid path to the 3.10.0-229.el7.x86_64 kernel headers. Would you like to change it?
    Redis从入门到精通
    solr服务的搭建
    SpringMvc的运行流程
  • 原文地址:https://www.cnblogs.com/yu757503836/p/10059166.html
Copyright © 2011-2022 走看看