zoukankan      html  css  js  c++  java
  • Arrays.sort和Collections.sort实现原理解析

    1、使用

    • 排序

    2、原理

    1. 事实上Collections.sort方法底层就是调用的array.sort方法,而且不论是Collections.sort或者是Arrays.sort方法,

    2. 跟踪下源代码吧,首先我们写个demo

                public static void main(String[] args) {
                     List<String> strings = Arrays.asList("6", "1", "3", "1","2");
    
                     Collections.sort(strings);//sort方法在这里
    
                     for (String string : strings) {
    
                         System.out.println(string);
                     }
                 }    

    简单得不能再简单的方法了,让我们一步步跟踪

    1. OK,往下面看,发现collections.sort方法调用的list.sort

    QQ20170221-0@2x

    1. 然后跟踪一下,list里面有个sort方法,但是list是一个接口,肯定是调用子类里面的实现,这里我们demo使用的是一个Arrays.asList方法,所以事实上我们的子类就是arraylist了。OK,看arraylist里面sort实现,选择第一个,为什么不选择第二个呢?(可以看二楼评论,解答得很正确,简单说就是用Arrays.sort创建的ArrayList对象)

    QQ20170221-1@2x ​

    1. OK,发现里面调用的Arrays.sort(a, c); a是list,c是一个比较器,我们来看一下这个方法 
      QQ20170221-2@2x

    我们没有写比较器,所以用的第二项,LegacyMergeSort.userRequested这个bool值是什么呢? 
    跟踪这个值,我们发现有这样的一段定义:

    > Old merge sort implementation can be selected (for
      >  compatibility with broken comparators) using a system property.
      >  Cannot be a static boolean in the enclosing class due to
      >  circular dependencies. To be removed in a future release.
    
      反正是一种老的归并排序,不用管了现在默认是关的
      1. OK,我们走的是sort(a)这个方法,接着进入这个 
        QQ20170221-3@2x
      2. 接着看我们重要的sort方法
    static void sort(Object[] a, int lo, int hi, Object[] work, int workBase, int workLen) {
                     assert a != null && lo >= 0 && lo <= hi && hi <= a.length;
    
                     int nRemaining  = hi - lo;
                     if (nRemaining < 2)
                         return;  // array的大小为0或者1就不用排了
    
                     // 当数组大小小于MIN_MERGE(32)的时候,就用一个"mini-TimSort"的方法排序,jdk1.7新加
                     if (nRemaining < MIN_MERGE) {
                        //这个方法比较有意思,其实就是将我们最长的递减序列,找出来,然后倒过来
                         int initRunLen = countRunAndMakeAscending(a, lo, hi);
                         //长度小于32的时候,是使用binarySort的
                         binarySort(a, lo, hi, lo + initRunLen);
                         return;
                     }
                    //先扫描一次array,找到已经排好的序列,然后再用刚才的mini-TimSort,然后合并,这就是TimSort的核心思想
                     ComparableTimSort ts = new ComparableTimSort(a, work, workBase, workLen);
                     int minRun = minRunLength(nRemaining);
                     do {
                         // Identify next run
                         int runLen = countRunAndMakeAscending(a, lo, hi);
    
                         // If run is short, extend to min(minRun, nRemaining)
                         if (runLen < minRun) {
                             int force = nRemaining <= minRun ? nRemaining : minRun;
                             binarySort(a, lo, lo + force, lo + runLen);
                             runLen = force;
                         }
    
                         // Push run onto pending-run stack, and maybe merge
                         ts.pushRun(lo, runLen);
                         ts.mergeCollapse();
    
                         // Advance to find next run
                         lo += runLen;
                         nRemaining -= runLen;
                     } while (nRemaining != 0);
    
                     // Merge all remaining runs to complete sort
                     assert lo == hi;
                     ts.mergeForceCollapse();
                     assert ts.stackSize == 1;
             }
    1. 回到5,我们可以看到当我们写了比较器的时候就调用了TimSort.sort方法,源码如下
    static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
                                      T[] work, int workBase, int workLen) {
                     assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;
    
                     int nRemaining  = hi - lo;
                     if (nRemaining < 2)
                         return;  // Arrays of size 0 and 1 are always sorted
    
                     // If array is small, do a "mini-TimSort" with no merges
                     if (nRemaining < MIN_MERGE) {
                         int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
                         binarySort(a, lo, hi, lo + initRunLen, c);
                         return;
                     }
    
                     /**
                      * March over the array once, left to right, finding natural runs,
                      * extending short natural runs to minRun elements, and merging runs
                      * to maintain stack invariant.
                      */
               TimSort<T> ts = new TimSort<>(a, c, work, workBase, workLen);
                    int minRun = minRunLength(nRemaining);
                    do {
                        // Identify next run
                        int runLen = countRunAndMakeAscending(a, lo, hi, c);
    
                        // If run is short, extend to min(minRun, nRemaining)
                        if (runLen < minRun) {
                            int force = nRemaining <= minRun ? nRemaining : minRun;
                            binarySort(a, lo, lo + force, lo + runLen, c);
                            runLen = force;
                        }
    
                        // Push run onto pending-run stack, and maybe merge
                        ts.pushRun(lo, runLen);
                        ts.mergeCollapse();
    
                        // Advance to find next run
                        lo += runLen;
                        nRemaining -= runLen;
                    } while (nRemaining != 0);
    
                    // Merge all remaining runs to complete sort
                    assert lo == hi;
                    ts.mergeForceCollapse();
                    assert ts.stackSize == 1;
          }

    和上面的sort方法是一样的,其实也就是TimSort的源代码

    3、总结

    不论是Collections.sort方法或者是Arrays.sort方法,底层实现都是TimSort实现的,这是jdk1.7新增的,以前是归并排序。TimSort算法就是找到已经排好序数据的子序列,然后对剩余部分排序,然后合并起来

  • 相关阅读:
    HTML: vertical algin Big/small div in same row (bootstrap)
    unix时间转换
    chrome工具分析
    DNF 包管理器
    安装nodejs
    location属性解释
    angular深入理解途径
    ui-router与ngRoute
    angular $location服务获取url
    Python文件操作
  • 原文地址:https://www.cnblogs.com/yuandluck/p/9477706.html
Copyright © 2011-2022 走看看