zoukankan      html  css  js  c++  java
  • 因子分析

    有前提条件

    1. 样本量
    2. 各变量之间必须有相关性(被归纳在一个因子里强相关,因子间弱相关)

    因子分析:对定量数据,不对定性数据

    特征值大于1

    自己设置几个因子

    旋转后,就是调整能够解释的项的占比,

    选择原则

    1.贡献率0.5

    2.大于1

    3.可解释

    1. 纠缠不清:根据专业知识判断
    2. 张冠李戴:大部队与某一项关联,但是其中的一个因素和大部队不同,这时需要把这一个因素剔除掉

    共同度:比较低的不要

    1. 探索因子,就是把它归类
    2. 计算权重,就是看最后得到所有因子各占的比例,如果需要的因子相加不为1,则需要标准化。

    ===========================================

    对应分析:类别数据之间的关系

    手机品牌偏好和收入水平之间的关系

    手机品牌偏好确实有差异

    收入水平确实有差异

    重点:图

     

    高收入与E品牌有关系

    离原点越远表示差异性越强

    =========================================

    XY两个矩阵之间的关系,但是比较困难

    X做好多个线性组合ABCD

    Y做好多个线性组合EFGH

    将这两组线性组合相互成对并比较,找到相关性最强的线性组合。

    即比较A-EA-fA-GA-HB-EB-fB-GB-HC-EC-fC-GC-HD-ED-fD-GD-H之间的相关性,假如A-E最强,就将它挑选出来。

    然后还剩下

    X线性组合BCD

    Y线性组合FGH

    再以同样方式比较,但是不同的是,选择的线性组合必须与A且与E正交。

    假如第二组选择的是B-F,则需要BA正交,BE正交,FA正交,FE正交,即BA不相关,BE不相关,FA不相关,FE不相关。

    以此类推。

    第二组解释第一组没解释的部分

    标准化

    解释

    1. 通过线性组合
    2. 线性组合与单元变量的相关性

    =====================================

    目的一:消灭信息重叠--PCA

    目的二:探讨变量内的联系和结构:FA

    PCA1.尽量多保留信息2.主成分之间不相关

    用途:

    1. 主成分评价:
    2. 主成分回归,解决共线性问题

    小于1个主成分都不用考虑

     

  • 相关阅读:
    解决This application failed to start because it could not find or load the Qt platform plugin "windows
    计算几何-凸包-toleft test
    Bit Operation妙解算法题
    带线表格据gt生成无线表格
    caffe的python接口提取resnet101某层特征
    camelot工具进行pdf表格解析重建
    python批量爬取文档
    IP被封检测地址
    驱动人生后门清除方案
    应用安全
  • 原文地址:https://www.cnblogs.com/yuanjingnan/p/12025124.html
Copyright © 2011-2022 走看看