zoukankan      html  css  js  c++  java
  • lightoj-1098

    1098 - A New Function
    PDF (English) Statistics Forum
    Time Limit: 3 second(s) Memory Limit: 32 MB
    We all know that any integer number n is divisible by 1 and n. That is why these two numbers are not the actual divisors of any numbers. The function SOD(n) (sum of divisors) is defined as the summation of all the actual divisors of an integer number n. For example,

    SOD(24) = 2+3+4+6+8+12 = 35.

    The function CSOD(n) (cumulative SOD) of an integer n, is defined as below:


    Given the value of n, your job is to find the value of CSOD(n).

    Input
    Input starts with an integer T (≤ 1000), denoting the number of test cases.

    Each case contains an integer n (0 ≤ n ≤ 2 * 109).

    Output
    For each case, print the case number and the result. You may assume that each output will fit into a 64 bit signed integer.

    Sample Input
    Output for Sample Input
    3
    2
    100
    200000000
    Case 1: 0
    Case 2: 3150
    Case 3: 12898681201837053

    解题思路:

    通过一个因子,求出与此因子相对应的其他因子,求和;

    例如n=20的时候,当因子为2时,对应的 2(4),3(6),4(8),5(10),6(12),7(14),8(16),9(18),10(10)  

    当为3时,对应的为2(6),3(9),4(12),5(15),6(18)

    此时要计算时要注意避免 2和3时之间有重复的情况。

    #include<iostream>
    #include<cmath>
    #include<cstdio>
    using namespace std;
    
    typedef long long ll;
    int T;
    ll sum,n,p,q,m;
    
    int main(){
         
        scanf("%d",&T);
        for(int t=1;t<=T;t++){
            sum = 0;
            scanf("%lld",&n);
            
            m = (ll)sqrt(n);
            for(ll i=2;i<=m;i++){
                sum += i;
                // p,q 变量的增加是为了避免重复情况的产生 
                p = i+1;
                q = n/i;
                if(q<q) continue;
                sum += (q-p+1)*i;
                sum += (q-p+1)*(q+p)/2;
                
            }
            printf("Case %d: %lld
    ",t,sum);
            
            
        }
        
        return 0;
    }
    View Code
  • 相关阅读:
    面试题4:二维数组中查找
    面试题3:数组中重复的数字
    编程31:分别用递归和非递归的方式遍历二叉树
    编程17:判断一个列表是否是回文结构
    编程16:环形单链表的约瑟夫问题
    Sqli-labs less 55
    Sqli-labs less 56
    Sqli-labs less 57
    Sqli-labs less 58
    Sqli-labs less 59
  • 原文地址:https://www.cnblogs.com/yuanshixingdan/p/5539756.html
Copyright © 2011-2022 走看看