1045 - Digits of Factorial
PDF (English) Statistics Forum
Time Limit: 2 second(s) Memory Limit: 32 MB
Factorial of an integer is defined by the following function
f(0) = 1
f(n) = f(n - 1) * n, if(n > 0)
So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.
In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.
Input
Input starts with an integer T (≤ 50000), denoting the number of test cases.
Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.
Output
For each case of input you have to print the case number and the digit(s) of factorial n in the given base.
Sample Input
Output for Sample Input
5
5 10
8 10
22 3
1000000 2
0 100
Case 1: 3
Case 2: 5
Case 3: 45
Case 4: 18488885
Case 5: 1
3 5
4 4
1 1
10
1 1
Case 1:
1
3
12
Case 2:
10
解题思路: 因为求位数的时候可以用对数来求,所以f[]直接求对数存起来。
位数=(f[n]/log(base)+1) (ps: +1 是因为例如 log2(4) = 2, 但他的位数是3来的, 所以要+1)
#include<iostream> #include<cstring> #include<cmath> #include<cstdio> using namespace std; typedef unsigned long long ull; const int N = 1000010; double f[N]; void init(){ f[0] = log(1); for(int i=1;i<=N;i++){ f[i] = f[i-1]+log(i*1.0); } return ; } int main(){ init(); int T,n,base; scanf("%d",&T); for(int t=1;t<=T;t++){ scanf("%d%d",&n,&base); printf("Case %d: %d ",t,(int)(f[n]/log(base)+1)); } return 0; }