zoukankan      html  css  js  c++  java
  • Codeforces Beta Round #1 C.Ancient Berland Circus

    C. Ancient Berland Circus
    time limit per test2 seconds
    memory limit per test64 megabytes
    inputstandard input
    outputstandard output
    Nowadays all circuses in Berland have a round arena with diameter 13 meters, but in the past things were different.

    In Ancient Berland arenas in circuses were shaped as a regular (equiangular) polygon, the size and the number of angles could vary from one circus to another. In each corner of the arena there was a special pillar, and the rope strung between the pillars marked the arena edges.

    Recently the scientists from Berland have discovered the remains of the ancient circus arena. They found only three pillars, the others were destroyed by the time.

    You are given the coordinates of these three pillars. Find out what is the smallest area that the arena could have.

    Input
    The input file consists of three lines, each of them contains a pair of numbers –– coordinates of the pillar. Any coordinate doesn't exceed 1000 by absolute value, and is given with at most six digits after decimal point.

    Output
    Output the smallest possible area of the ancient arena. This number should be accurate to at least 6 digits after the decimal point. It's guaranteed that the number of angles in the optimal polygon is not larger than 100.

    Examples
    input
    0.000000 0.000000
    1.000000 1.000000
    0.000000 1.000000
    output
    1.00000000

    思路: 这题就是精度坑得一逼

    ac = acos(1 - a*a/2/r/r);
    bc = acos(1 - b*b/2/r/r);
    cc = 2*pi - ac - bc;

    不能写成

    ac = acos(1 - a*a/2/r/r);
    bc = acos(1 - b*b/2/r/r);
    cc = acos(1 - c*c/2/r/r);

    不然会对角度极小时会造成精度丢失。

    而且如果用ac = acos(sqrt(r*r-a*a/4)/r);

    算完角度再来*2也是不行,精度也会严重丢失。gcd可能还会形成死循环。。

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    
    double eps = 1e-2;
    
    double dist(double x1,double y1,double x2,double y2){
        return sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
    }
    
    double gcd(double a,double b){
    
        return b<eps?a:gcd(b,fmod(a,b));
    }
    const double pi = 3.1415926535898;
    
    int main(){
        
        double x1,x2,x3,y1,y2,y3,a,b,c,r,s,p,ac,bc,cc;
        scanf("%lf%lf",&x1,&y1);
        scanf("%lf%lf",&x2,&y2);
        scanf("%lf%lf",&x3,&y3);
        
        a = dist(x1,y1,x2,y2);
        b = dist(x2,y2,x3,y3);
        c = dist(x1,y1,x3,y3);
        p = (a+b+c)/2;
        s = sqrt(p*(p-a)*(p-b)*(p-c));
        r = a*b*c/4/s;
        ac = acos(1 - a*a/2/r/r);
        bc = acos(1 - b*b/2/r/r);
        cc = 2*pi - ac - bc;
        double unit=0;
        unit = gcd(ac,bc);
        unit = gcd(unit,cc);
        
        printf("%.6lf
    ",pi/unit*r*r*sin(unit));
        
        return 0;
    } 
  • 相关阅读:
    java实现趣味拼算式
    windows下安装docker
    Docker_入门?只要这篇就够了!(纯干货适合0基础小白)
    网关支付、银联代扣通道、快捷支付、银行卡支付分别是怎么样进行支付的?
    【深度解析】第三方支付的分类、接口与支付流程
    去外包公司的伙伴们小心了!——亲身经历,数数外包公司的坑
    一个tomcat下部署多个项目或一个服务器部署多个tomcat
    tomcat部署web应用的4种方法以及部署多个应用
    datatables增删改查的实现
    基于SpringMVC+Bootstrap+DataTables实现表格服务端分页、模糊查询
  • 原文地址:https://www.cnblogs.com/yuanshixingdan/p/5574337.html
Copyright © 2011-2022 走看看