zoukankan      html  css  js  c++  java
  • Mysql如何分析慢查询及优化(一)--- EXPLAIN详解

    慢查询优化是势在必行的,但是要对mysql慢查询进行优化,首先要知道慢查询的语句和mysql数据库的运行状态。

    对数据库慢查询进行排查之前先了解一下mysql的几个命令,有助于帮助我们定位慢查询语句:

     show status;  // 查询mysql数据库的一些运行状态
    show status like 'uptime'; // 查看mysql数据库启动多长时间,myisam存储引擎长时间启动需要进行碎片整理
    show status like 'slow_queries'; //查看慢查询的数量
    show variables like 'long_query_time';//查看慢查询的时间
    set long_query_time = 0.5;//设置慢查询的时间,单位秒(s)
     
    一般我们对慢查询语句进行优化,需要分析定位语句的执行情况,mysql的Explain命令可以很好的帮助我们,下边我们对Explain进行详解:
     
    1.用法:
     
    Explain select * from notes where id = 137 ;//将Explain命令放到查询命令前即可

      返回的结果如下:

    2.返回结果字段说明:

    id:SELECT的查询序列号。
    select_type:表示SELECT语句的类型。有以下几种取值:
        SIMPLE:表示简单杳询,其中不包括连接查询和子查询;
        PRIMARY:表示主查询,或者最外层的查询语句;
        UNION:表示连接查询的第2个或后面的查询语句;
        DEPENDENT UNION:连接查询中的第2个或后面的SELECT语句,取决于外面的查询;
        UNION RESULT:连接查询的结果;
        SUBQUERY:子查询中的第一个SELECT语句;
        DEPENDENT SUBQUERY:子查询中的第一个SELECT,取决于外面的查询;
        DERIVED:导出表的SELECT (FROM语句的子查询)。
    table:表示查询的表。
    type:表示表的连接类型。下面按照从最优类型到最差类型的顺序给出各种连接类型:
        (1) system
            该表仅有一行的系统表。这是const连接类型的一个特例。
        (2) const
            数据表最多只有一个匹配行,它将在查询开始时被读取,并在余下的査询优化中作为常量对待。
         const表查询速度很快,因为它们只读取一次。const用于使用常数值比较PRIMARY KEY或UNIQUE索引的所有部分的场合。 比如: SELECT
    * from tb1_name WHERE primary_key=1; SELECT * from tb1_name WHERE primary_key_part1=1 AND primary_key_part2=2 (3) eq_ref 对于每个来自前面的表的行组合,从该表中读取一行。当一个索引的所有部分都在查询中使用,并且索引是UNIQUE或者PRIMARY KEY时,即可使用这种类型。 eq_ref可以用于使用“=”操作符比较带索引的列。比较值可以为常量或者一个在该表前面所读取的表的列的表达式。 比如: SELECT * FROM ref_table,other_table WHERE ref_table.key_cloumn = other_table.cloumn; SELECT * FROM ref_table,other_tbale WHERE ref_table.key_cloumn_part1 = other_table.cloumn AND ref_table.key_cloumn_part2 = 1; (4)ref 对于来自前面的表的任意组合,将从该表中读取所有匹配的行。
        这种类型用于索引既不是UNIQUE也不是PRIMARY KEY的情况,或者查询中使用了索引列在左子集,既索引中左边的部分列组合。ref可以用于使用
    =或者<=>操作符的带索引的列。 比如: select * from ref_table where key_column=expr; select * from ref_table,other_table where ref_table.key_column=other_table.column; select * from ref_table,other_table where ref_table.key_column_part1=other_table.column and ref_table.key_column_part2=1; (5)ref_or_null 这种连接类型类似ref,不同的是mysql会在检索的时候额外的搜索包含null值的记录。在解决子查询中经常使用该链接类型的优化。 比如: select * from ref_table where key_column=expr or key_column is null; (6)index_merge 该链接类型表示使用了索引合并优化方法。在这种情况下,key列包含了使用的索引的清单,key_len包含了使用的索引的最长的关键元素。 (7)unique_subquery 该类型替换了下面形式的IN子查询的ref: value in (select primary_key from single_table where some_expr) (8)index_subquery 这种连接类型类似 unique_subquery。可以替换IN子查询,不过它用于在子查询中没有唯一索引的情况下, 例如以下形式: value in (select key_column from single_table where some_expr) (9)range 只检索给定范围的行,使用一个索引来选择行。key列显示使用了哪个索引。ken_len包含所使用索引的最长关键元素。
        当使用
    =, <>, >,>=, <, <=, is null, <=>, between, 或 in操作符,用常量比较关键字列时,类型为range。 下面介绍几种检索制定行的情况: select * from tbl_name where key_column = 10; select * from tbl_name where key_column between 10 and 20; select * from tbl_name where key_column in (10,20,30); select * from tbl_name where key_part1= 10 and key_part2 in (10,20,30); (10)index 连接类型跟ALL一样,不同的是它只扫描索引树。它通常会比ALL快点,因为索引文件通常比数据文件小。 (11)ALL 对于前面的表的任意行组合,进行完整的表扫描。
         如果第一个表没有被标识为const的话就不大好了,在其他情况下通常是非常糟糕的。正常地,可以通过增加索引使得能从表中更快的取得记录以避免ALL。
    possible_keys:是指MySQL在搜索表记录时可能使用哪个索引。
      如果这个字段的值是NULL,就表示没有索引被用到。
      这种情况下,就可以检查WHERE子句中哪些字段哪些字段适合增加索引以提高查询的性能。
      创建一下索引,然后再用explain 检查一下。
     key:显示MySQL实际上要用的索引。
      当没有任何索引被用到的时候,这个字段的值就是NULL。
      想要让MySQL强行使用或者忽略在 possible_keys字段中的索引列表,可以在查询语句中使用关键字force index
    , use index或 ignore index。参考SELECT语法。
    key_len:显示mysql使用索引的长度。当key 字段的值为NULL时,索引的长度就是NULL。注意,key_len的值可以告诉你在联合索引中MySQL会真正使用了哪些索引。
    ref:表示使用哪个列或常数与索引一起来查询记录。
    rows:显示MySQL在表中进行查询时必须检查的行数。 
    Extra:显示查询中mysql的附加信息。以下是这个字段的几个不同值的解释:
        (1) distinct MySQL当找到当前记录的匹配联合结果的第一条记录之后,就不再搜索其他记录了。
    (2) not exists MySQL在查询时做一个LEFT JOIN优化时,当它在当前表中找到了和前一条记录符合LEFT JOIN条件后,就不再搜索更多的记录了。
         比如:select
    * from t1 left join t2 on t1.id=t2.id where t2.id is null; 假使 t2.id 定义为 not null
         这种情况下,MySQL将会扫描表 t1并且用 t1.id 的值在 t2 中查找记录。
         当在 t2中找到一条匹配的记录时,这就意味着 t2.id 肯定不会都是null,就不会再在 t2 中查找相同id值的其他记录了。
         也可以这么说,对于 t1 中的每个记录,mysql只需要在t2 中做一次查找,而不管在 t2 中实际有多少匹配的记录。 (3)
    range checked for each record (index map: #) mysql没找到合适的可用的索引。
         取代的办法是,对于前一个表的每一个行连接,它会做一个检验以决定该使用哪个索引(如果有的话),并且使用这个索引来从表里取得记录。
         这个过程不会很快,但总比没有任何索引时做表连接来得快。 (4)using filesort MySQL需要额外的做一遍从已排好的顺序取得记录。
         排序程序根据连接的类型遍历所有的记录,并且将所有符合where条件的记录的要排序的键和指向记录的指针存储起来。
         这些键已经排完序了,对应的记录也会按照排好的顺序取出来。

    (5)using index 字段的信息直接从索引树中的信息取得,而不再去扫描实际的记录。这种策略用于查询时的字段是一个独立索引的一部分。 (6)using temporary mysql需要创建临时表存储结果以完成查询。这种情况通常发生在查询时包含了group by和order by子句,它以不同的方式列出了各个字段。 (7)using where where子句将用来限制哪些记录匹配了下一个表或者发送给客户端。
         除非你特别地想要取得或者检查表种的所有记录,否则的话当查询的extra字段值不是using where并且表连接类型是all或index时可能表示有问题。 如果你想要让查询尽可能的快,那么就应该注意extra字段的值为using filesort和using temporary的情况。
     3.索引没起作用的情况:
      (1) 使用LIKE关键字的查询语句
            在使用LIKE关键字进行查询的查询语句中,如果匹配字符串的第一个字符为“%”,索引不会起作用。只有“%”不在第一个位置索引才会起作用。
       (2)使用多列索引的查询语句
            MySQL可以为多个字段创建索引。一个索引最多可以包括16个字段。对于多列索引,只有查询条件使用了这些字段中的第一个字段时,索引才会被使用。
       (3)使用OR关键字的查询语句
            查询语句的查询条件中只有OR关键字,且OR前后的两个条件中的列都是索引时,查询中才会使用索引。否则,查询将不使用索引。
     
    4.优化数据库结构:
            合理的数据库结构不仅可以使数据库占用更小的磁盘空间,而且能够使查询速度更快。数据库结构的设计,需要考虑数据冗余、查询和更新的速度、字段的数据类型是否合理等多方面的内容。

      (1)  分解表

      对于字段比较多的表,如果有些字段的使用频率很低,可以将这些字段分离出来形成新表。因为当一个表的数据量很大时,会由于使用频率低的字段的存在而变慢。

      (2) 增加中间表
            对于需要经常联合查询的表,可以建立中间表以提高查询效率。通过建立中间表,把需要经常联合查询的数据插入到中间表中,然后将原来的联合查询改为对中间表的查询,以此来提高查询效率。
     
      (3) 合理冗余字段
            设计数据库表时应尽量遵循范式理论的规约,尽可能减少冗余字段,让数据库设计看起来精致、优雅。但是合理加入冗余字段可以提高查询速度。 
       
      (4) 切分查询
            比如我们要删除旧的数据,可能需要一次性删除很多数据会锁住很多数据、占满整个事务日志、耗尽系统资源、阻塞很多小的但重要的查询。将一个大的DELETE语句切成多个较小的查询可以尽可能小的影响MySQL性能,同时还可以减少MySQL复制的延迟,如下:
            DELETE FROM table WHERE create_date < NOW(); 
            替换为
            rows_affected = 0
            do { 
                rows_affected = do_query(
                    "DELETE FROM table WHERE create_date < NOW() LIMIT 10000"    
                )
            } while rows_affected > 0
            一次删除一万行数据一般来说是一个比较高效而且对服务器影响也最小的做法,如果每次暂停一会会更好。
     
          (5) 分解关联查询
      将关联查询分解为多个小查询是很有必要的。就是可以对每一个表进行一次单表查询,然后将查询结果在应用程序中进行关联.例如:
            SELECT * FROM tag 
            JOIN tag_post ON tag_id = tag.id
            JOIN post ON tag_post.post_id = post.id
            WHERE tag.tag = 'mysql';
            分解为:
            SELECT * FROM tag WHERE tag = 'mysql';
            SELECT * FROM tag_post WHERE tag_id = 1234;
            SELECT * FROM post WHERE post.id in (123,456,567);
            有很多场景都可以使用:比如当应用能够方便地缓存单个查询的结果的时候、当可以将数据分布到不同MySQL服务器上的时候、当能够使用IN()的方式代替关联查询的时候、当查询中使用同一个数据表的时候。
  • 相关阅读:
    css 深入理解
    2018 web经典面试题
    CSS 居中布局
    HTTP首部解析
    http状态码有那些?分别代表是什么意思?
    基本HTTP协议流程是什么?
    JS-变量
    javascript基础1
    css3弹性盒模型(Flexbox)
    文字效果和颜色
  • 原文地址:https://www.cnblogs.com/yuanwanli/p/9024862.html
Copyright © 2011-2022 走看看