zoukankan      html  css  js  c++  java
  • 212. Word Search II

    Given a 2D board and a list of words from the dictionary, find all words in the board.

    Each word must be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

    For example,
    Given words = ["oath","pea","eat","rain"] and board =

    [
      ['o','a','a','n'],
      ['e','t','a','e'],
      ['i','h','k','r'],
      ['i','f','l','v']
    ]
    
    Return ["eat","oath"].

    Note:
    You may assume that all inputs are consist of lowercase letters a-z.


    对比第79题,79题是判断一个字符串,而212题是判断多个字符串。思路和79题类似,对矩阵里的每个元素做dfs,只不过79题判断遍历到目前的substring是否在一个字符串里,而这题判断遍历到目前的substring是否在TrieTree里(相当于对所有字符串同时检查,而不是逐个检查)。
    如果给的多个字符串有很多有相同的前缀,这个方法能降低时间复杂度。

    好慢啊:15% 如何优化!

    public class Solution {
        public class TrieNode {
            int count;
            TrieNode[] children = new TrieNode[26];
            public void insert(String word) {
                TrieNode cur = this;
                int i = 0;
                while (i < word.length()) {
                    if (cur.children[word.charAt(i) - 'a'] == null) {
                        cur.children[word.charAt(i) - 'a'] = new TrieNode();
                    }
                    cur = cur.children[word.charAt(i) - 'a'];
                    i++;
                }
                cur.count = 1;
            }
            // 0: not prefix, 1: prefix, 2: contains string
            public int startsWith(String prefix) {
                TrieNode cur = this;
                int i = 0;
                while (i < prefix.length()) {
                    if (cur.children[prefix.charAt(i) - 'a'] == null) {
                        return 0;
                    }
                    cur = cur.children[prefix.charAt(i) - 'a'];
                    i++;
                }
                if (cur.count == 0) {
                    return 1;
                } else {
                    cur.count = 0;
                    return 2;
                }
            }
        }
        TrieNode root = new TrieNode();
        public List<String> findWords(char[][] board, String[] words) {
            for (int i = 0; i < words.length; i++) {
                root.insert(words[i]);
            }
            boolean[][] visited = new boolean[board.length][board[0].length];
            List<String> re = new LinkedList<String>();
            for (int i = 0; i < board.length; i++) {
                for (int j = 0; j < board[0].length; j++) {
                    find(board, visited, i, j, "", re);
                }
            }
            return re;
        }
        public void find(char[][] board, boolean[][] visited, int i, int j, String str, List<String> list) {
            if (i < 0 || i > board.length - 1 || j < 0 || j > board[0].length - 1 || visited[i][j]) {
                return;
            }
            String tmp = str + board[i][j];
            int starts = root.startsWith(tmp);
            if (starts == 0) {
                return;
            } else {
                if (starts == 2) {
                    list.add(tmp);
                }
                visited[i][j] = true;
                find(board, visited, i - 1, j, tmp, list);
                find(board, visited, i + 1, j, tmp, list);
                find(board, visited, i, j - 1, tmp, list);
                find(board, visited, i, j + 1, tmp, list);
                visited[i][j] = false;
            }
        }
    }
    
  • 相关阅读:
    你的C/C++程序为什么无法运行?揭秘Segmentation fault (2)
    亲,这就是遗传算法
    我们为什么需要Map-Reduce?
    搜索引擎-架构概述(2)
    搜索引擎-架构概述(1)
    单源最短路径-迪杰斯特拉算法(Dijkstra's algorithm)
    最小生成树-普利姆算法eager实现
    最小生成树-普利姆算法lazy实现
    最小生成树-克鲁斯卡尔算法(kruskal's algorithm)实现
    索引式优先队列(indexed priority queue)
  • 原文地址:https://www.cnblogs.com/yuchenkit/p/7223491.html
Copyright © 2011-2022 走看看