zoukankan      html  css  js  c++  java
  • Supervised Learning001

    • Logistic Regression
      • We can approach the classfication problem ignoring the fact that y is discrete-valued, and use old linear regression algorithm to try to predict y given x. 
      • Intuitively, it also doesn't make sense for hθ(x) to take values larger than 1 or smaller than 0
      • To fix this, let's change the form for hypotheses  hθ(x), it's called logistic function or sigmoid function

     

      • a useful property of the derivetive of the sigmoid function, which is written as g'
      • To fit θ for logisitic regerssion model, let's endow our classification model with a set of probabilistic assumptions, and then fit the parameters via maximum likelihood
        • assume that

           it can be written more compactly as 

        •  Assuming that the n training examples wear generated independently, we can the write down th likelihood function of the parameters as

           and log likelihood function

        •  To get the maximum of l(θ), similar to our derivation in the case of linear regression, we can use gradient ascent. Written in vectorial notation, our updates will therefore be given by , take derivatives to derive the stochastic gradient ascent rule:

        • This therefore gives us the stochastic gradient ascent rule 

  • 相关阅读:
    OCP-1Z0-053-V12.02-285题
    OCP-1Z0-053-V12.02-281题
    今天博客抽风了,我也抽风了
    OCP-1Z0-053-V12.02-278题
    OCP-1Z0-053-V12.02-271题
    OCP-1Z0-053-V12.02-269题
    OCP-1Z0-053-V12.02-256题
    OCP-1Z0-053-V12.02-249题
    OCP-1Z0-053-V12.02-248题
    OCP-1Z0-053-V12.02-244题
  • 原文地址:https://www.cnblogs.com/yuelien/p/12917084.html
Copyright © 2011-2022 走看看