zoukankan      html  css  js  c++  java
  • 《机电传动控制》第四周作业

    一、题目要求:

    结合本周学习的交流电机原理及启动、调速、制动特性,用Modelica设计和仿真一个用三相交流异步电机带动起重机起升机构运行。具体要求如下:

    1)实现如下机械运动周期:

    控制电机带重物上升,从静止加速到800r/min

    保持800r/min匀速运动0.5s,

    减速到静止,保持静止状态0.5s,

    带重物下降,从静止达到600r/min

    保持600r/min匀速运动0.6s,

    减速到静止。
    (为了便于仿真,匀速和静止持续时间较短)

    2) 升降机构和重物折算到到电机转子轴上的等效负载惯量为1Kg.m^2,折算到到电机转子轴上的等效负载转矩是15N.m。

    3)使用统一的电机模型,如果控制策略中用到转子串电阻,允许将该电机的转子改为绕线式转子(参数不变)。

    4)参照教材中给出的交流电机启动、调速和制动方法,设计控制策略,用Modelica实现控制策略并与电机模型实现联合仿真。

    5)可以采用定子串电阻、转子串电阻、定子调压、定子调频等手段,但必须具备工程上的可实施性。

    6)评价指标:快速启动、制动,冲击转矩和冲击电流小,能耗小,兼顾实施的经济性。

    二、仿真分析:

    由于转速n与fs存在正比例的关系,所以采用改变fs来控制n的方法。在老师所给程序案例中,fs为50Hz时对应电机转速n为1500r/min,所以认为n=30fs。以下程序编写,均以控制不同时间段的fs为基础,来完成相应的转速要求,具体内容参考郑君政同学的参数设置。

    三、仿真代码及结果:

    model SACIM "A Simple AC Induction Motor Model"

    type Voltage=Real(unit="V");

    type Current=Real(unit="A");

    type Resistance=Real(unit="Ohm");

    type Inductance=Real(unit="H");

    type Speed=Real(unit="r/min");

    type Torque=Real(unit="N.m");

    type Inertia=Real(unit="kg.m^2");

    type Frequency=Real(unit="Hz");

    type Flux=Real(unit="Wb");

    type Angle=Real(unit="rad");

    type AngularVelocity=Real(unit="rad/s");

    constant Real Pi = 3.1415926;

    Current i_A"A Phase Current of Stator";

    Current i_B"B Phase Current of Stator";

    Current i_C"C Phase Current of Stator";

    Voltage u_A"A Phase Voltage of Stator";

    Voltage u_B"B Phase Voltage of Stator";

    Voltage u_C"C Phase Voltage of Stator";

    Current i_a"A Phase Current of Rotor";

    Current i_b"B Phase Current of Rotor";

    Current i_c"C Phase Current of Rotor";

    Frequency f_s"Frequency of Stator";

    Torque Tm"Torque of the Motor";

    Speed n"Speed of the Motor";

    Flux Psi_A"A Phase Flux-Linkage of Stator";

    Flux Psi_B"B Phase Flux-Linkage of Stator";

    Flux Psi_C"C Phase Flux-Linkage of Stator";

    Flux Psi_a"a Phase Flux-Linkage of Rotor";

    Flux Psi_b"b Phase Flux-Linkage of Rotor";

    Flux Psi_c"c Phase Flux-Linkage of Rotor";

    Angle phi"Electrical Angle of Rotor";

    Angle phi_m"Mechnical Angle of Rotor";

    AngularVelocity w"Angular Velocity of Rotor";

    Torque Tl"Load Torque";

    parameter Resistance Rs = 0.531+0.5 "Stator Resistance";

    parameter Resistance Rr = 0.408+0.5 "Rotor Resistance";

    parameter Inductance Ls = 0.00252"Stator Leakage Inductance";

    parameter Inductance Lr = 0.00252"Rotor Leakage Inductance";

    parameter Inductance Lm = 0.00847"Mutual Inductance";

    parameter Frequency f_N = 50"Rated Frequency of Stator";

    parameter Voltage u_N = 220"Rated Phase Voltage of Stator";

    parameter Real p =2"number of pole pairs";

    parameter Inertia Jm = 0.1"Motor Inertia";

    parameter Inertia Jl = 1"Load Inertia";

    parameter Frequency f1 = 27;

    parameter Frequency f2 = 15;

    parameter Frequency f3 = 0.2;

    parameter Frequency f4 = 19.8;

    parameter Frequency f5 = 19.8;

    parameter Real t1 = 100+500+671; //加速 800r/min恒速

    parameter Real t2 = t1+50; //减速

    parameter Real t3 = t2+600; //静止0.5s

    parameter Real t4 = t3+200; //反向加速

    parameter Real t5 = t4+300+600; //600r/min恒速

    Real time1(start=0);

    Real time2(start=0);

    Real time3(start=0);

    initial equation

    Psi_A = 0;

    Psi_B = 0;

    Psi_C = 0;

    Psi_a = 0;

    Psi_b = 0;

    Psi_c = 0;

    phi = 0;

    w = 0;

    equation

    u_A = Rs * i_A + 1000 * der(Psi_A);

    u_B = Rs * i_B + 1000 * der(Psi_B);

    u_C = Rs * i_C + 1000 * der(Psi_C);

    0 = Rr * i_a + 1000 * der(Psi_a);

    0 = Rr * i_b + 1000 * der(Psi_b);

    0 = Rr * i_c + 1000 * der(Psi_c);

    Psi_A = (Lm+Ls)*i_A + (-0.5*Lm)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi))*i_a + (Lm*cos(phi+2*Pi/3))*i_b + (Lm*cos(phi-2*Pi/3))*i_c;

    Psi_B = (-0.5*Lm)*i_A + (Lm+Ls)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi-2*Pi/3))*i_a + (Lm*cos(phi))*i_b + (Lm*cos(phi+2*Pi/3))*i_c;

    Psi_C = (-0.5*Lm)*i_A + (-0.5*Lm)*i_B + (Lm+Ls)*i_C + (Lm*cos(phi+2*Pi/3))*i_a + (Lm*cos(phi-2*Pi/3))*i_b + (Lm*cos(phi))*i_c;

    Psi_a = (Lm*cos(phi))*i_A + (Lm*cos(phi-2*Pi/3))*i_B + (Lm*cos(phi+2*Pi/3))*i_C + (Lm+Lr)*i_a + (-0.5*Lm)*i_b + (-0.5*Lm)*i_c;

    Psi_b = (Lm*cos(phi+2*Pi/3))*i_A + (Lm*cos(phi))*i_B + (Lm*cos(phi-2*Pi/3))*i_C + (-0.5*Lm)*i_a + (Lm+Lr)*i_b + (-0.5*Lm)*i_c;

    Psi_c = (Lm*cos(phi-2*Pi/3))*i_A + (Lm*cos(phi+2*Pi/3))*i_B + (Lm*cos(phi))*i_C + (-0.5*Lm)*i_a + (-0.5*Lm)*i_b + (Lm+Lr)*i_c;

    Tm =-p*Lm*((i_A*i_a+i_B*i_b+i_C*i_c)*sin(phi)+(i_A*i_b+i_B*i_c+i_C*i_a)*sin(phi+2*Pi/3)+(i_A*i_c+i_B*i_a+i_C*i_b)*sin(phi-2*Pi/3));

    w = 1000 * der(phi_m);

    phi_m = phi/p;

    n= w*60/(2*Pi);

    Tm-Tl = (Jm+Jl) * 1000 * der(w);

    if time <= 100 then

    u_A = 0;

    u_B = 0;

    u_C = 0;

    Tl = 0;

    elseif time <= t4 then

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000);

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3);

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3);

    Tl = 15;

    else

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000);

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000+2*Pi/3);

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000+4*Pi/3);

    Tl = 15;

    end if;

    algorithm

    if time <= 100 then

    f_s := 0;

    elseif time <= t1 then

    f_s := f1;

    elseif time <= t2 then

    f_s := f2;

    elseif time <= t3 then

    f_s := f3;

    elseif time <= t4 then

    f_s := (time-t3)/(t4-t3)*(f4-f3)+f3;

    elseif time <= t5 then

    f_s := f5;

    else

    f_s := 0;

    end if;

    if n > 800*0.98 and n < 800*0.99 then

    time1 := time;

    end if;

    if n < 0.1 then

    time2 := time;

    end if;

    if n > -600*0.98 and n < -600*0.99 then

    time3 := time;

    end if;

    end SACIM;

    四、总结

    基本按照要求完成任务,曲线整体较为平滑。

  • 相关阅读:
    Section 3.1 Shaping Regions
    3D@OpenSource
    查找资料
    Section 3.1 Shaping Regions Again
    USACO Contact IOI’98 TLE
    事项ON丰宁坝上草原
    四叉树@POJ1610 Quad Trees
    在TabCtrl上放View@MFC
    CUGB的一场周赛
    贴图程序进展
  • 原文地址:https://www.cnblogs.com/yujin13/p/5308803.html
Copyright © 2011-2022 走看看