zoukankan      html  css  js  c++  java
  • 12.高斯消去法(1)——矩阵编程基础

       对于一阶线性方程的求解有多种方式,这里将介绍利用高斯消去法解一阶线性方程组。在介绍高斯消去法前需要对《线性代数》做一下温习,同时在代码中对于矩阵的存储做一个简要介绍。

      通常遇到矩阵我们会利用二维数组来进行对矩阵数值的存储(例如前几篇中动态规划中对于求解矩阵初始化就是利用二维数组),但在计算机的内存中是没有“二维”这种存储方式的,内存都是以“一维”的方式存储数据,那么这就带来一个问题,在代码层面定义一个二维数组时,计算机内部是怎么存储的呢?

    int[][] array = new int[3][3]; //Java中定义一个3行3列的矩阵

      Java中的二维数组定义在内存中实际如下图所示,它是按照行优先的顺序进行存储的。

      

      在编写矩阵计算的程序时,应当尽量避免跳跃访问矩阵中的元素——《算法笔记》。所以如果我们运算顺序是按照列来运算的话,此时Java定义的二维数组就会对元素进行跳跃访问。不妨利用一维数组按照自定义的行优先或者列优先来存储矩阵数据,这样对于列运算也有应对策略。

      举个例子:

      根据矩阵乘法的定义,A显然不能与X直接相乘,将A作转置得到:

      AX相乘=>X·AT

      综上,AX相乘可推出:

     

      矩阵与向量相乘有两种实现方式(参照《算法笔记》):

      第一种:

    for j ∈ {1, 2, 3, …, n} do
        bj ← 0
    end for
    for i ∈ {1, 2, 3, …, m} do
        for j ∈ {1, 2, 3, …, n} do
            bj ← bj + aij·xj
        end for
    end for

      显然利用这种方式计算矩阵与向量的乘积时,按行优先存储的矩阵速度更快。

      第二种:

    for j ∈ {1, 2, 3, …, n} do
        bj ← 0
        for i ∈ {1, 2, 3, …, m} do
            bj ← bj + aij·xj
        end for
    end for

      显然利用这种方式计算矩阵与向量的成绩时,按列优先存储的矩阵速度更快。

  • 相关阅读:
    window下配置ssh key
    Mysqldump记录
    WordPress插件入口菜单创建的位置代码
    阿里大鱼发送短信使用记录
    SpringMVC–SSH -- RESTful -- JSR303
    Spring MVC程序中得到静态资源文件css,js,图片
    包机项目源码分析笔记
    myeclipse中java文件头注释格式设置
    oracle扩展dblink数。
    linux--解决oracle sqlplus 中上下左右backspace不能用
  • 原文地址:https://www.cnblogs.com/yulinfeng/p/7134440.html
Copyright © 2011-2022 走看看