zoukankan      html  css  js  c++  java
  • 【leetcode】62.63 Unique Paths

    62. Unique Paths

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

    How many possible unique paths are there?


    Above is a 3 x 7 grid. How many possible unique paths are there?

    Note: m and n will be at most 100.

    Tips:机器人从左上一直走到右下,(只能走右与下)直到走到FInish的位置。

    package medium;
    
    import java.util.Arrays;
    
    public class L62UniquePaths {
    	public int uniquePaths(int m, int n) {
    		int[][] visited = new int[m][n];
    		for (int i = 0; i < m; i++) {
    			for (int j = 0; j < n; j++) {
    				visited[i][j] = -1;
    				System.out.println(i + "," + j + ">" + visited[i][j]);
    			}
    		}
    		int count = movingCount(m, n, 0, 0, visited);
    		return count;
    	}
    	public int movingCount(int m, int n, int row, int col, int[][] visited) {
    		int count = 0;
    		if (row < 0 || col < 0 || row >= m || col >= n)
    			return 0;
    		if (row == m - 1 && col == n - 1)
    			return 1;
    		if (visited[row][col] != -1)
    			return visited[row][col];
    		count = movingCount(m, n, row + 1, col, visited) + movingCount(m, n, row, col + 1, visited);
    		visited[row][col] = count;
    		return count;
    	}
    
            //另外一种很快地方法。当前状态依赖于前一种状态
    	public int Solution2(int m, int n) {
    		int[] row = new int[n];
    		Arrays.fill(row,1);
    		for (int i = 1; i < m; i++) {
    			for (int j = 1; j < n; j++) {
    				row[j]+=row[j-1];
    			}
    		}
    		return row[n-1];
    	}
    
    	public static void main(String[] args) {
    		L62UniquePaths cc = new L62UniquePaths();
    		int count = cc.uniquePaths(3, 4);
    		System.out.println(count);
    	}
    }            
    

     63. Unique Paths II

    Follow up for "Unique Paths":

    Now consider if some obstacles are added to the grids. How many unique paths would there be?

    An obstacle and empty space is marked as 1 and 0 respectively in the grid.

    For example,

    There is one obstacle in the middle of a 3x3 grid as illustrated below.

    [
      [0,0,0],
      [0,1,0],
      [0,0,0]
    ]
    

    The total number of unique paths is 2.

    Note: m and n will be at most 100.

    Tips:本题目是根据62题,稍作改变得来的,数组中1的位置不能走。

    package medium;
    
    public class L63UniquePaths2 {
    	
    	public int uniquePathsWithObstacles(int[][] obstacleGrid) {
    		if (obstacleGrid == null)
    			return 0;
    		int m = obstacleGrid.length;
    		int n = obstacleGrid[0].length;
    		int[][] visited = new int[m][n];
    		for (int i = 0; i < m; i++) {
    			for (int j = 0; j < n; j++) {
    				visited[i][j] = -1;
    				System.out.println(i + "," + j + ">" + visited[i][j]);
    			}
    		}
    		int count = movingCount(m, n, 0, 0, visited, obstacleGrid);
    		return count;
    
    	}
    
    	public int movingCount(int m, int n, int row, int col, int[][] visited, int[][] obstacleGrid) {
    		int count = 0;
    		if (row < 0 || col < 0 || row >= m || col >= n)
    			return 0;
    		if (obstacleGrid[row][col] == 0) {
    			if (row == m - 1 && col == n - 1)
    				return 1;
    			if (visited[row][col] != -1)
    				return visited[row][col];
    			count = movingCount(m, n, row + 1, col, visited, obstacleGrid)
    					+ movingCount(m, n, row, col + 1, visited, obstacleGrid);
    			visited[row][col] = count;
    		}
    
    		return count;
    	}
    
    	public static void main(String[] args) {
    		L63UniquePaths2 l63 = new L63UniquePaths2();
    		int[][] obstacleGrid = { { 0, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 } };
    		int[][] aa = { { 1 } };
    		int count = l63.uniquePathsWithObstacles(aa);
    		System.out.println(count);
    
    	}
    }
    
  • 相关阅读:
    windows 上安装redis和windows上redis与php扩展
    mysql存储过程详细讲解及完整实例下载
    html模板生成静态页面及模板分页处理
    php中自动加载类_autoload()和spl_autoload_register()实例详解
    php+mysql事务处理例子详细分析实例
    git学习和常用命令
    block理解
    oc中数组,字典,集合使用的备忘录
    oc log的记录 宏的正确姿势
    swift中的optional
  • 原文地址:https://www.cnblogs.com/yumiaomiao/p/8334657.html
Copyright © 2011-2022 走看看