import os import cv2 import numpy as np from scipy.stats import mode import time import concurrent.futures ''' multi-process to crop pictures. ''' def crop(file_path_list): origin_path, save_path = file_path_list img = cv2.imread(origin_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) closed_1 = cv2.erode(gray, None, iterations=4) closed_1 = cv2.dilate(closed_1, None, iterations=4) blurred = cv2.blur(closed_1, (9, 9)) # get the most frequent pixel num = mode(blurred.flat)[0][0] + 1 # the threshold depends on the mode of your images' pixels num = num if num <= 30 else 1 _, thresh = cv2.threshold(blurred, num, 255, cv2.THRESH_BINARY) # you can control the size of kernel according your need. kernel = np.ones((13, 13), np.uint8) closed_2 = cv2.erode(thresh, kernel, iterations=4) closed_2 = cv2.dilate(closed_2, kernel, iterations=4) _, cnts, _ = cv2.findContours(closed_2.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) c = sorted(cnts, key=cv2.contourArea, reverse=True)[0] # compute the rotated bounding box of the largest contour rect = cv2.minAreaRect(c) box = np.int0(cv2.boxPoints(rect)) # draw a bounding box arounded the detected barcode and display the image # cv2.drawContours(img, [box], -1, (0, 255, 0), 3) # cv2.imshow("Image", img) # cv2.imwrite("pic.jpg", img) # cv2.waitKey(0) xs = [i[0] for i in box] ys = [i[1] for i in box] x1 = min(xs) x2 = max(xs) y1 = min(ys) y2 = max(ys) height = y2 - y1 width = x2 - x1 crop_img = img[y1:y1 + height, x1:x1 + width] cv2.imwrite(save_path, crop_img) # cv2.imshow("Image", crop_img) # cv2.waitKey(0) print(f'the {origin_path} finish crop, most frequent pixel is {num}') def multi_process_crop(input_dir): with concurrent.futures.ProcessPoolExecutor() as executor: executor.map(crop, input_dir) if __name__ == "__main__": data_dir = '' save_dir = '' path_list = [(os.path.join(data_dir, o), os.path.join(save_dir, o)) for o in os.listdir(data_dir)] start = time.time() multi_process_crop(path_list) print(f'Total cost {time.time()-start} seconds')