zoukankan      html  css  js  c++  java
  • 1021. Deepest Root (25)

    题目链接:http://www.patest.cn/contests/pat-a-practise/1021

    题目:

    1021. Deepest Root (25)

    时间限制
    1500 ms
    内存限制
    65536 kB
    代码长度限制
    16000 B
    判题程序
    Standard
    作者
    CHEN, Yue

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

    Output Specification:

    For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.

    Sample Input 1:
    5
    1 2
    1 3
    1 4
    2 5
    
    Sample Output 1:
    3
    4
    5
    
    Sample Input 2:
    5
    1 3
    1 4
    2 5
    3 4
    
    Sample Output 2:
    Error: 2 components

    分析:

    用并查集来考察能否构成一棵树,
    找出最长树的深度基于这种一个事实:
    从随意一个节点S0出发,找到最大的深度H0和其相应的叶子节点D0。然后再从D0出发(当作S1)找到最深的长度H1,假设和H0相等则其就是最大的H,否则继续找,直到两次找到的H相等。


    当中,找最大深度函数find_height()。我是用类似层序遍历去做的,先把根节点和-1(一个标志位)放入队列中。然后每次取对头,假设是元素的话。则把其子节点都放入队列。假设是-1的话。则把深度++,而且再把-1放入,相当于-1变成了每层的结尾的标志。


    当然,求树最大深度能够用递归非常easy做出来,这里仅仅是用别的方法做个拓展(事实上这代码曾经写的,当时瞎想就想到这个)。


    AC代码:

    #include<stdio.h>
    #include<queue>
    #include<vector>
    #include<algorithm>
    using namespace std;
    vector<int>V[10001];
    queue<int>Q;
    int Tree[10001];
    int ans[10001];
    int findRoot(int x){
     if (Tree[x] == -1)return x;
     else {
      int tmp = findRoot(Tree[x]);
      Tree[x] = tmp;
      return tmp;
     }
    }
    bool mark[10001];
    int tail;
    int n;
    int find_height(int x){//找到最大深度的函数
     mark[x] = true;
     int height_tmp = 0;
     Q.push(x); Q.push(-1);
     while (!Q.empty()){
      if (Q.front() == -1){
       height_tmp++;
       Q.pop();
       if (Q.empty())break;
       else Q.push(-1);
      }
      int front = Q.front();
      tail = front;
      for (int i = 0; i < V[front].size(); i++){
       if (!mark[V[front][i]])Q.push(V[front][i]);
       mark[V[front][i]] = true;
      }
      Q.pop();
     }
     for (int i = 1; i <= n; i++){
      mark[i] = false;
     }
     return height_tmp;
    }
    int main(void){
     //freopen("F://Temp/input.txt", "r", stdin);
     while (scanf("%d", &n) != EOF){
      for (int i = 1; i <= n; i++){ //init
       Tree[i] = -1;
       ans[i] = 0;
       mark[i] = false;
      }
      if (!Q.empty())Q.pop();
      int a, b;
      for (int i = 0; i < n - 1; i++){//并查集部分
       scanf("%d%d", &a, &b);
       V[a].push_back(b);
       V[b].push_back(a);
       a = findRoot(a);
       b = findRoot(b);
       if (a != b) Tree[a] = b;
      }
      int com = 0;
      for (int i = 1; i <= n; i++){
       if (Tree[i] == -1)com++;
      }
      if (com > 1){//假设并查集找出超过两部分,则输出error...
       printf("Error: %d components", com);
       continue;
      }
      else{
       int h_max;
       int head;
       for (int i = 1; i <= n; i++){
        if (V[i].size() == 1){
         head = i;
         break;
        }
       }
       h_max = find_height(head);
       while (h_max != find_height(tail)){//假设找到的高度不同样。则继续找
        head = tail;
        h_max = find_height(head);
       }
       int j = 0;
       for (int i = 1; i <= n; i++){
        if (find_height(i) == h_max){
         ans[j++] = i;
        }
       }
       sort(ans, ans + j);
       for (int i = 0; i < j; i++){
        printf("%d
    ", ans[i]);
       }
       
       
      }
     }
     return 0;
    }
    


    截图:


    ——Apie陈小旭

  • 相关阅读:
    FreeCodeCamp( FCC)前端工程师 基础算法练习 分析与解答
    关于AuthorizeAttribute使用
    互联网菜鸟历险记之一
    FreeMarker与Spring MVC的结合应用
    SpringMVC上传文件
    桥接模式
    在Openfire中使用自己的数据表之修改系统属性
    在Openfire中使用自己的数据表之修改配置文件
    SpringMVC中使用DWR
    基于注解的DWR使用
  • 原文地址:https://www.cnblogs.com/yutingliuyl/p/6721486.html
Copyright © 2011-2022 走看看