zoukankan      html  css  js  c++  java
  • Scala入门到精通——第二十九节 Scala数据库编程

    本节主要内容

    1. Scala Mavenproject的创建
    2. Scala JDBC方式訪问MySQL
    3. Slick简单介绍
    4. Slick数据库编程实战
    5. SQL与Slick相互转换

    本课程在多数内容是在官方教程上改动而来的,官方给的样例是H2数据库上的。经过本人改造,用在MySQL数据库上,官方教程地址:http://slick.typesafe.com/doc/2.1.0/sql-to-slick.html

    1. Scala Mavenproject的创建

    本节的project项目採用的是Maven Project,在POM.xml文件里加入以下两个依赖就能够使用scala进行JDBC方式及Slick框架操作MySQL数据库:

     <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.18</version>
         </dependency>
         <dependency>
        <groupId>com.typesafe.slick</groupId>
        <artifactId>slick_2.11</artifactId>
        <version>2.1.0</version>
       </dependency>

    scala IDE for eclipse 中创建scala Maven项目的方式例如以下:
    在Eclispe 中点击” File->new->other”。例如以下图
    这里写图片描写叙述
    输入Maven能够看到Maven Project:

    这里写图片描写叙述
    直接next。得到
    这里写图片描写叙述
    再点击next,在filter中输入scala得到:
    这里写图片描写叙述
    选中,然后next输入相应的groupId等。直接finish就可以。创建完项目将上述依赖加入到pom.xml文件其中。这样就完毕了scala maven Project的创建。

    2. Scala JDBC方式訪问MySQL

    以下给出的是scala採用JDBC訪问MySQL的代码演示样例

    package cn.scala.xtwy.jdbc
    
    import java.sql.{ Connection, DriverManager }
    object ScalaJdbcConnectSelect extends App {
      // 訪问本地MySQLserver,通过3306端口訪问mysql数据库
      val url = "jdbc:mysql://localhost:3306/mysql"
      //驱动名称
      val driver = "com.mysql.jdbc.Driver"
      //用户名
      val username = "root"
      //密码
      val password = "123"
      //初始化数据连接
      var connection: Connection = _
      try {
       //注冊Driver
        Class.forName(driver)
        //得到连接
        connection = DriverManager.getConnection(url, username, password)
        val statement = connection.createStatement
        //运行查询语句,并返回结果
        val rs = statement.executeQuery("SELECT host, user FROM user")
        //打印返回结果
        while (rs.next) {
          val host = rs.getString("host")
          val user = rs.getString("user")
          println("host = %s, user = %s".format(host, user))
        }
      } catch {
        case e: Exception => e.printStackTrace
      }
      //关闭连接。释放资源
      connection.close
    }

    3. Slick简单介绍

    在前一小节中我们演示了怎样通过JDBC进行数据库訪问。相同在Scala中也能够利用JAVA中的ORM框架如Hibernate、IBatis等进行数据库的操纵,但它们都是Java风格的数据库操纵方式,Scala语言中也有着自己的ORM框架。眼下比較流行的框架包括:

    1、Slick (typesafe公司开发)
    
    2、Squeryl
    
    3、Anorm
    
    4、ScalaActiveRecord (基于Squeryl之上)
    
    5、circumflex-orm
    
    6、activate-framework(Scala版的Hibernate)

    本节课程要讲的便是Slick框架,它是Scala语言创建者所成立的公司TypeSafe所开发的一个Scala风格的开源数据库操纵框架,它眼下支持以下几种主流的数据:

    DB2 (via slick-extensions)
    Derby/JavaDB
    H2
    HSQLDB/HyperSQL
    Microsoft Access
    Microsoft SQL Server (via slick-extensions)
    MySQL
    Oracle (via slick-extensions)
    PostgreSQL
    SQLite

    当然它也支持其他数据,仅仅只是功能可能还不完好。在Slick中。能够像訪问Scala自身的集合一样对数据库进行操作。它具有例如以下几个特点:

    1 数据库的訪问採用Scala风格:

    //以下给出的是数据查询操作
    class Coffees(tag: Tag) extends Table[(String, Double)](tag, "COFFEES") {
      def name = column[String]("COF_NAME", O.PrimaryKey)
      def price = column[Double]("PRICE")
      def * = (name, price)
    }
    val coffees = TableQuery[Coffees]
    
    //以下给出的数据訪问API
    // Query that only returns the "name" column
    coffees.map(_.name)
    
    // Query that does a "where price < 10.0"
    coffees.filter(_.price < 10.0)
    

    从上面的代码能够看到。Slick訪问数据库就跟Scala操纵自身的集合一样.

    2 Slick数据操纵是类型安全的

    // The result of "select PRICE from COFFEES" is a Seq of Double
    // because of the type safe column definitions
    val coffeeNames: Seq[Double] = coffees.map(_.price).list
    
    // Query builders are type safe:
    coffees.filter(_.price < 10.0)
    // Using a string in the filter would result in a compilation error

    3 支持链式操作

    // Create a query for coffee names with a price less than 10, sorted by name
    coffees.filter(_.price < 10.0).sortBy(_.name).map(_.name)
    // The generated SQL is equivalent to:
    // select name from COFFEES where PRICE < 10.0 order by NAME

    4. Slick 数据库编程实战

    以下的代码演示了Slick怎样创建数据库表、怎样进行数据插入操作及怎样进行数据的查询操作(以MySQL为例):

    package cn.scala.xtwy
    
    //导入MySQL相关方法
    import scala.slick.driver.MySQLDriver.simple._
    
    object UseInvoker extends App {
    
      // 定义一个Test表
      //表中包括两列,各自是id,name
      class Test(tag: Tag) extends Table[(Int, String)](tag, "Test") {
        def k = column[Int]("id", O.PrimaryKey)
        def v = column[String]("name")
         // Every table needs a * projection with the same type as the table's type parameter
         //每一个Table中都应该有*方法。它的类型必须与前面定义的类型參数(Int, String)一致
        def * = (k, v)
      }
      //创建TableQuery对象(这里调用的是TableQuery的apply方法
      //没有显式地调用new 
      val ts = TableQuery[Test]
    
      //forURL注冊MySQL驱动器,传入URL,用户名及密码
      //方法回返的是一个DatabaseDef对象,然后再调用withSession方法
      Database.forURL("jdbc:mysql://localhost:3306/slick", "root","123",
          driver = "com.mysql.jdbc.Driver") withSession { 
    
        //定义一个隐式值
        //implicit session: MySQLDriverbackend.Session
        //兴许方法中当做隐式參数传递
        implicit session =>
    
        // 创建Test表
        //create方法中带有一个隐式參数
        //def create(implicit session: JdbcBackend.SessionDef): Unit
        ts.ddl.create
        //插入数据
        //def insertAll(values: U*)(implicit session: JdbcBackend.SessionDef): MultiInsertResult
        ts.insertAll(1 -> "a", 2 -> "b", 3 -> "c", 4 -> "d", 5 -> "e")
       //数据库查询(这里返回全部数据)
       ts.foreach { x => println("k="+x._1+" v="+x._2) }
    
       //这里查询返回全部主鍵 <3的
       ts.filter { _.k <3 }.foreach { x => println("k="+x._1+" v="+x._2) }
      }
      //模式匹配方式
      ts.foreach { case(id,name) => println("id="+id+" name="+name) }
    }

    以下我们再给一个更为复杂的样例来演示Slick中是怎样进行数据的入库与查询操作的:

    package cn.scala.xtwy
    
    import scala.slick.driver.MySQLDriver.simple._
    
    object CoffeeExample extends App {
      // Definition of the SUPPLIERS table
      //定义Suppliers表
      class Suppliers(tag: Tag) extends Table[(Int, String, String, String, String, String)](tag, "SUPPLIERS") {
        def id = column[Int]("SUP_ID", O.PrimaryKey) // This is the primary key column
        def name = column[String]("SUP_NAME")
        def street = column[String]("STREET")
        def city = column[String]("CITY")
        def state = column[String]("STATE")
        def zip = column[String]("ZIP")
        // Every table needs a * projection with the same type as the table's type parameter
        def * = (id, name, street, city, state, zip)
      }
      val suppliers = TableQuery[Suppliers]
    
      // Definition of the COFFEES table
       //定义Coffees表
      class Coffees(tag: Tag) extends Table[(String, Int, Double, Int, Int)](tag, "COFFEES") {
        def name = column[String]("COF_NAME", O.PrimaryKey)
        def supID = column[Int]("SUP_ID")
        def price = column[Double]("PRICE")
        def sales = column[Int]("SALES")
        def total = column[Int]("TOTAL")
        def * = (name, supID, price, sales, total)
        // A reified foreign key relation that 
        //can be navigated to create a join
        //外鍵定义,它使得supID域中的值关联到suppliers中的id
        //从而保证表中数据的正确性
        //它定义的事实上是一个n:1的关系,
        //即一个Coffees相应仅仅有一个Suppliers,
        //而一个Suppliers能够相应多个Coffees
        def supplier = foreignKey("SUP_FK", supID, suppliers)(_.id)
      }
      val coffees = TableQuery[Coffees]
    
      Database.forURL("jdbc:mysql://localhost:3306/slick", "root", "123",
        driver = "com.mysql.jdbc.Driver") withSession {
    
          implicit session =>
            // Create the tables, including primary and foreign keys
            //按顺序创建表
            (suppliers.ddl ++ coffees.ddl).create
    
            // Insert some suppliers
            //插入操作,集合的方式
            suppliers += (101, "Acme, Inc.", "99 Market Street", "Groundsville", "CA", "95199")
            suppliers += (49, "Superior Coffee", "1 Party Place", "Mendocino", "CA", "95460")
            suppliers += (150, "The High Ground", "100 Coffee Lane", "Meadows", "CA", "93966")
    
            // Insert some coffees (using JDBC's batch insert feature, if supported by the DB)
            //批量插入操作,集合方式
            coffees ++= Seq(
              ("Colombian", 101, 7.99, 0, 0),
              ("French_Roast", 49, 8.99, 0, 0),
              ("Espresso", 150, 9.99, 0, 0),
              ("Colombian_Decaf", 101, 8.99, 0, 0),
              ("French_Roast_Decaf", 49, 9.99, 0, 0))
           //返回表中全部数据,相当于SELECT * FROM COFFEES
           coffees foreach {
              case (name, supID, price, sales, total) =>
                println("  " + name + "	" + supID + "	" + price + "	" + sales + "	" + total)
    
            }
           //返回表中全部数据。仅仅只是这次是直接让数据库帮我们进行转换
            val q1 = for (c <- coffees)
              yield LiteralColumn("  ") ++ c.name ++ "	" ++ c.supID.asColumnOf[String] ++
              "	" ++ c.price.asColumnOf[String] ++ "	" ++ c.sales.asColumnOf[String] ++
              "	" ++ c.total.asColumnOf[String]
            // The first string constant needs to be lifted manually to a LiteralColumn
            // so that the proper ++ operator is found
            q1 foreach println
    
            //联合查询
            //採用===进行比較操作,而非==操作符。用于进行值比較
            //相同的还有!=值不等比較符
            //甚至其他比較操作符与scala是一致的 <, <=, >=, >
             val q2 = for {
              c <- coffees if c.price < 9.0
              s <- suppliers if s.id === c.supID
            } yield (c.name, s.name)
    
    }
    

    5. SQL与Slick相互转换

    package cn.scala.xtwy
    
    import scala.slick.driver.MySQLDriver.simple._
    import scala.slick.jdbc.StaticQuery.interpolation
    import scala.slick.jdbc.GetResult
    
    object SQLAndSlick extends App {
      type Person = (Int, String, Int, Int)
      class People(tag: Tag) extends Table[Person](tag, "PERSON") {
        def id = column[Int]("ID", O.PrimaryKey)
        def name = column[String]("NAME")
        def age = column[Int]("AGE")
        def addressId = column[Int]("ADDRESS_ID")
        def * = (id, name, age, addressId)
        def address = foreignKey("ADDRESS", addressId, addresses)(_.id)
      }
      lazy val people = TableQuery[People]
    
      type Address = (Int, String, String)
      class Addresses(tag: Tag) extends Table[Address](tag, "ADDRESS") {
        def id = column[Int]("ID", O.PrimaryKey)
        def street = column[String]("STREET")
        def city = column[String]("CITY")
        def * = (id, street, city)
      }
    
      lazy val addresses = TableQuery[Addresses]
    
      val dbUrl = "jdbc:mysql://localhost:3306/slick"
      val jdbcDriver = "com.mysql.jdbc.Driver"
      val user = "root"
      val password = "123"
      val db = Database.forURL(dbUrl, user, password, driver = jdbcDriver)
    
      db.withSession { implicit session =>
    
        (people.ddl ++ addresses.ddl).create
    
        //插入address数据
        addresses += (23, "文一西路", "浙江省杭州市")
        addresses += (41, "紫荆花路", "浙江省杭州市")
    
        //插入people数据
        people += (1, "摇摆少年梦", 27, 23)
        people += (2, "john", 28, 41)
        people += (3, "stephen", 28, 23)
    
        //以下两条语句是等同的(获取固定几个字段)
        val query = sql"select ID, NAME, AGE from PERSON".as[(Int, String, Int)]
        query.list.foreach(x => println("id=" + x._1 + " name=" + x._2 + " age=" + x._3))
    
        val query2 = people.map(p => (p.id, p.name, p.age))
        query2.list.foreach(x => println("id=" + x._1 + " name=" + x._2 + " age=" + x._3))
    
        //以下两条语句是等同的(Where语句)
        val query3 = sql"select * from PERSON where AGE >= 18 AND NAME = '摇摆少年梦'".as[Person]
        query3.list.foreach(x => println("id=" + x._1 + " name=" + x._2 + " age=" + x._3))
    
        val query4 = people.filter(p => p.age >= 18 && p.name === "摇摆少年梦")
        query4.list.foreach(x => println("id=" + x._1 + " name=" + x._2 + " age=" + x._3))
    
        //orderBy
        sql"select * from PERSON order by AGE asc, NAME".as[Person].list
        people.sortBy(p => (p.age.asc, p.name)).list
    
        //max
        sql"select max(AGE) from PERSON".as[Option[Int]].first
        people.map(_.age).max
    
        //隐式join
        sql"""
      select P.NAME, A.CITY
      from PERSON P, ADDRESS A
      where P.ADDRESS_ID = a.id
    """.as[(String, String)].list
    
        people.flatMap(p =>
          addresses.filter(a => p.addressId === a.id)
            .map(a => (p.name, a.city))).run
    
        // or equivalent for-expression:
        (for (
          p <- people;
          a <- addresses if p.addressId === a.id
        ) yield (p.name, a.city)).run
    
        //join操作
        sql"""select P.NAME, A.CITY from PERSON P join ADDRESS A on P.ADDRESS_ID = a.id """.as[(String, String)].list
        (people join addresses on (_.addressId === _.id))
      .map{ case (p, a) => (p.name, a.city) }.run
      }
    
    }

    上面列出的仅仅是Slick与SQL的部分转换,还有诸如:Update、Delete等操作能够參见:http://slick.typesafe.com/doc/2.1.0/sql-to-slick.html

    加入公众微信号,能够了解很多其他最新Spark、Scala相关技术资讯
    这里写图片描写叙述

  • 相关阅读:
    MySQL回顾
    mysql多表查询
    通过JDBC进行简单的增删改查(以MySQL为例)
    如何正确学习JavaScript
    List集合遍历时修改元素出现并发修改异常总结
    国内有哪些质量高的JAVA社区?
    【题解】【链表】【Leetcode】Add Two Numbers
    【题解】【字符串】【Leetcode】Valid Palindrome
    【题解】【DP】【Leetcode】Climbing Stairs
    【题解】【数组】【Leetcode】Merge Sorted Array
  • 原文地址:https://www.cnblogs.com/yutingliuyl/p/6991925.html
Copyright © 2011-2022 走看看