关于模板匹配的一个小补充:
做了一个很小型的模板匹配用于缺陷检测的应用,测试结果发现模板使用锐化后叠加原图的图片效果会比较好。
测试过程同样存在图片数量不足的问题。
模板匹配针对缺陷可能存在多种不同形态的检测不合适。
发现一个现象,我用作检测模板的那一个50*50的矩形缺陷是符合正态分布的。
高斯混合模型GMM
halcon中其他常用的分类器:
多层感知器(MLP)(BP神经网络)
支持向量机(SVM)
halcon中注意图像变量和控制变量使用上的区别,对于控制变量,可以使用||来获取数组长度,但是不能对图像变量这么做。
如果想要获取图像变量的长度,需要使用count_obj
来做(配合select_obj
)。
注意select_obj按照index选择对象,这里的index是从1开始的。
打了一遍class_citrus_fruits的例程,分类橘子和柠檬,总结一下使用gmm做分类的步骤:
- 读取训练用的图片,训练用的图片应当是分类好的而不是几类混合在一起的;
- 使用threshold等相关算子将图像中要用来分类的部分筛选出来,以计算橘子和柠檬的特征;
- 将面积和圆度作为分类的标准,设置分类器;
- 读取多张图片中多个橘子和柠檬,将特征提取出来设置到分类器中;
- 训练模型
- 使用相同的方法找出测试用图片中的重点区域,用训练好的分类器进行识别和做标记。
使用这个分类器的必要条件:
- 不同类别之间有明显的可供区别的特征,并且可以将他们计算出来
- 用来分类的图像能够容易的找到他们的边缘, 也即目标物体与背景色区别较大。
# LAWS纹理滤波应用于缺陷检测
基本原理:结合GMM分类器,对于没有缺陷的测试样本,应该能够分类,对于有缺陷的样本,会分不出类。使用分类后的图像与原图像相减,得出缺陷区域。