zoukankan      html  css  js  c++  java
  • Modular Inverse(zoj3609+欧几里德)

    Modular Inverse


    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1x (mod m). This is equivalent to ax≡1 (mod m).

    Input

    There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.

    Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.

    Output

    For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".

    Sample Input

    3
    3 11
    4 12
    5 13
    

    Sample Output

    4
    Not Exist
    8
    

    References


    Author: WU, Zejun
    Contest: The 9th Zhejiang Provincial Collegiate Programming Contest

    首先我来回顾下欧几里德的几个定理,有助于理解这道题;

       定理一:如果d = gcd(a, b),则必能找到正的或负的整数k和l,使 d = a*x+ b*y。

       定理二:若gcd(a, b) = 1,则方程ax ≡ c (mod b)在[0, b-1]上有唯一解。

       定理三:若gcd(a, b) = d,则方程ax ≡ c (mod b)在[0, b/d - 1]上有唯一解。

    转载请注明出处:寻找&星空の孩子

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4712

    对于ax+by=1;  即ax=1(mod b)      当且仅当gcd(a,b)!=1 的时候,无解!

     1 #include<stdio.h>
     2 
     3 void exgcd(int a,int b,int &d,int &x,int &y)
     4 {
     5     if(!b){d=a;x=1;y=0;}
     6     else
     7     {
     8         exgcd(b,a%b,d,y,x);
     9         y-=x*(a/b);
    10     }
    11 }
    12 int main()
    13 {
    14     int T,a,m;
    15     scanf("%d",&T);
    16     while(T--)
    17     {
    18         int d,x,y;
    19         scanf("%d%d",&a,&m);
    20         exgcd(a,m,d,x,y);
    21         if(d==1)
    22         {
    23             while(x<=0)
    24             {
    25                 x+=m/d;
    26             }
    27             printf("%d
    ",x);
    28         }
    29         else
    30             printf("Not Exist
    ");
    31     }
    32     return 0;
    33 }
    View Code
  • 相关阅读:
    iOS
    iOS
    iOS
    iOS
    iOS
    iOS
    iOS
    iOS
    iOS
    iOS
  • 原文地址:https://www.cnblogs.com/yuyixingkong/p/4461306.html
Copyright © 2011-2022 走看看