一、ICP( Index_Condition_Pushdown)
对 where 中过滤条件的处理,根据索引使用情况分成了三种:(何登成)index key, index filter, table filter
如果WHERE条件可以使用索引,MySQL 会把这部分过滤操作放到存储引擎层,存储引擎通过索引过滤,把满足的行从表中读取出。ICP能减少Server层访问存储引擎的次数和引擎层访问基表的次数。
- session级别设置:set optimizer_switch="index_condition_pushdown=on
-
对于InnoDB表,ICP只适用于辅助索引
-
当使用ICP优化时,执行计划的Extra列显示Using index condition提示
-
不支持主建索引的ICP(对于Innodb的聚集索引,完整的记录已经被读取到Innodb Buffer,此时使用ICP并不能降低IO操作)
-
当 SQL 使用覆盖索引时但只检索部分数据时,ICP 无法使用
-
ICP的加速效果取决于在存储引擎内通过ICP筛选掉的数据的比例
index_condition_pushdown会大大减少行锁的个数,如select for update, 因为行锁是在引擎层的
例如:
现在的索引
show index from sm_performance_all; +--------------------+------------+-------------------------------+--------------+----------------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | +--------------------+------------+-------------------------------+--------------+----------------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | sm_performance_all | 0 | PRIMARY | 1 | id | A | 40527 | NULL | NULL | | BTREE | | | | sm_performance_all | 1 | FK_a9t29a4b2af1vfny1j2minc1x | 1 | company_id | A | 316 | NULL | NULL | YES | BTREE | | | | sm_performance_all | 1 | FK_n3ng4a5qju19fw8qy4uskp4g1 | 1 | bill_id | A | 21532 | NULL | NULL | YES | BTREE | | | | sm_performance_all | 1 | FK_eb13u3xwslt9t7wwuycg7vha6 | 1 | car_id | A | 16794 | NULL | NULL | YES | BTREE | | | | sm_performance_all | 1 | FK_2bfhskvklf6mdk557tc3yy3y1 | 1 | commission_entity_id | A | 177 | NULL | NULL | YES | BTREE | | | | sm_performance_all | 1 | FK_6fr5ib5iyjyu155dncmc48cwr | 1 | member_card_id | A | 34 | NULL | NULL | YES | BTREE | | | | sm_performance_all | 1 | FK_93p22vcog266wa82i44a6m18b | 1 | user_id | A | 483 | NULL | NULL | YES | BTREE | | | | sm_performance_all | 1 | FK_p6nc7l6ewnkcpm2y4o3wct81r | 1 | member_card_bill_id | A | 4 | NULL | NULL | YES | BTREE | | | | sm_performance_all | 1 | billId_userId_memberCarBillId | 1 | bill_id | A | 24194 | NULL | NULL | YES | BTREE | | | | sm_performance_all | 1 | billId_userId_memberCarBillId | 2 | user_id | A | 25688 | NULL | NULL | YES | BTREE | | | | sm_performance_all | 1 | billId_userId_memberCarBillId | 3 | member_card_bill_id | A | 25946 | NULL | NULL | YES | BTREE | | | +--------------------+------------+-------------------------------+--------------+----------------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ 11 rows in set (0.00 sec)
现在的语句执行情况
explain select * from sm_performance_all p where p.date_created>'2018-01-01' and p.date_created< '2018-02-01' and p.type=0; +----+-------------+-------+------------+------+---------------+------+---------+------+-------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+------+-------+----------+-------------+ | 1 | SIMPLE | p | NULL | ALL | NULL | NULL | NULL | NULL | 40527 | 1.11 | Using where | +----+-------------+-------+------------+------+---------------+------+---------+------+-------+----------+-------------+ 1 row in set, 1 warning (0.00 sec)
添加索引后
ALTER TABLE sm_performance_all add index date_created_type(date_created, type );
explain select * from sm_performance_all p where p.date_created>'2018-01-01' and p.date_created< '2018-02-01' and p.type=0; +----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------+----------+-----------------------+ | 1 | SIMPLE | p | NULL | range | date_created_type | date_created_type | 6 | NULL | 1 | 10.00 | Using index condition | +----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------+----------+-----------------------+ 1 row in set, 1 warning (0.00 sec)
二、MRR(Multi-Range Read )
随机 IO 转化为顺序 IO 以降低查询过程中 IO 开销的一种手段,这对IO-bound类型的SQL语句性能带来极大的提升。
MRR can be used for InnoDB
and MyISAM
tables for index range scans and equi-join operations.
-
A portion of the index tuples are accumulated in a buffer.
-
The tuples in the buffer are sorted by their data row ID.
-
Data rows are accessed according to the sorted index tuple sequence.
上述的SQL语句需要根据辅助索引date_created_type进行查询,但是由于要求得到的是表中所有的列,因此需要回表进行读取。而这里就可能伴随着大量的随机I/O。这个过程如下图所示:
而MRR的优化在于,并不是每次通过辅助索引就回表去取记录,而是将其rowid给缓存起来,然后对rowid进行排序后,再去访问记录,这样就能将随机I/O转化为顺序I/O,从而大幅地提升性能。这个过程如下所示:
然而,在MySQL当前版本中,基于成本的算法过于保守,导致大部分情况下优化器都不会选择MRR特性。为了确保优化器使用mrr特性,请执行下面的SQL语句:
set optimizer_switch='mrr=on,mrr_cost_based=off';
读取全部字段时
explain select * from sm_performance_all p where p.date_created>'2018-01-01' and p.date_created< '2018-02-01' and p.type=0; +----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------+----------+----------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------+----------+----------------------------------+ | 1 | SIMPLE | p | NULL | range | date_created_type | date_created_type | 6 | NULL | 1 | 10.00 | Using index condition; Using MRR | +----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------+----------+----------------------------------+ 1 row in set, 1 warning (0.00 sec)
只读取部分字段时:
读取外键
explain select car_id from sm_performance_all p where p.date_created>'2018-01-01' and p.date_created< '2018-02-01' and p.type=0; +----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------+----------+----------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------+----------+----------------------------------+ | 1 | SIMPLE | p | NULL | range | date_created_type | date_created_type | 6 | NULL | 1 | 10.00 | Using index condition; Using MRR | +----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------+----------+----------------------------------+ 1 row in set, 1 warning (0.00 sec)
读取主键
explain select id from sm_performance_all p where p.date_created>'2018-01-01' and p.date_created< '2018-02-01' and p.type=0; +----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------+----------+--------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------+----------+--------------------------+ | 1 | SIMPLE | p | NULL | range | date_created_type | date_created_type | 6 | NULL | 1 | 10.00 | Using where; Using index | +----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------+----------+--------------------------+ 1 row in set, 1 warning (0.00 sec)
For MRR, a storage engine uses the value of the read_rnd_buffer_size
system variable as a guideline for how much memory it can allocate for its buffer.
默认256KB
show GLOBAL VARIABLES like '%buffer_size'; +-------------------------+----------+ | Variable_name | Value | +-------------------------+----------+ | bulk_insert_buffer_size | 8388608 | | innodb_log_buffer_size | 16777216 | | innodb_sort_buffer_size | 1048576 | | join_buffer_size | 262144 | | key_buffer_size | 8388608 | | myisam_sort_buffer_size | 8388608 | | preload_buffer_size | 32768 | | read_buffer_size | 131072 | | read_rnd_buffer_size | 262144 | | sort_buffer_size | 262144 | +-------------------------+----------+ 10 rows in set (0.00 sec)
三、表连接实现方式
3.1 Nested Loop Join
将驱动表/外部表的结果集作为循环基础数据,然后循环该结果集,每次获取一条数据作为下一个表的过滤条件查询数据,然后合并结果,获取结果集返回给客户端。Nested-Loop一次只将一行传入内层循环, 所以外层循环(的结果集)有多少行, 内存循环便要执行多少次,效率非常差。
EXPLAIN SELECT * from sm_performance_all p LEFT JOIN sm_bill b ON p.bill_id > b.car_id where p.company_id>1024; +----+-------------+-------+------------+-------+------------------------------+------------------------------+---------+------+--------+----------+------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+------------------------------+------------------------------+---------+------+--------+----------+------------------------------------------------+ | 1 | SIMPLE | p | NULL | range | FK_a9t29a4b2af1vfny1j2minc1x | FK_a9t29a4b2af1vfny1j2minc1x | 9 | NULL | 20263 | 100.00 | Using index condition; Using MRR | | 1 | SIMPLE | b | NULL | ALL | car_id_idx | NULL | NULL | NULL | 738383 | 100.00 | Range checked for each record (index map: 0x2) | +----+-------------+-------+------------+-------+------------------------------+------------------------------+---------+------+--------+----------+------------------------------------------------+ 2 rows in set, 1 warning (0.00 sec)
3.2 Block Nested-Loop Join
将外层循环的行/结果集存入join buffer, 内层循环的每一行与整个buffer中的记录做比较,从而减少内层循环的次数。主要用于当被join的表上无索引。
CREATE TABLE t1 (a int PRIMARY KEY, b int); CREATE TABLE t2 (a int PRIMARY KEY, b int); INSERT INTO t1 VALUES (1,2), (2,1), (3,2), (4,3), (5,6), (6,5), (7,8), (8,7), (9,10); INSERT INTO t2 VALUES (3,0), (4,1), (6,4), (7,5); EXPLAIN SELECT * FROM t1 LEFT JOIN t2 ON t1.a = t2.a WHERE t2.b <= t1.a AND t1.a <= t1.b; +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+ | 1 | SIMPLE | t1 | NULL | ALL | PRIMARY | NULL | NULL | NULL | 9 | 33.33 | Using where | | 1 | SIMPLE | t2 | NULL | ALL | PRIMARY | NULL | NULL | NULL | 4 | 25.00 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+ 2 rows in set, 1 warning (0.00 sec)
3.3 Batched Key Access
当被join的表能够使用索引时,就先好顺序,然后再去检索被join的表。对这些行按照索引字段进行排序,因此减少了随机IO。如果被Join的表上没有索引,则使用老版本的BNL策略。
参考: