zoukankan      html  css  js  c++  java
  • 内存对齐.结构体对齐

    __attrubte__ ((packed)) 的作用就是告诉编译器取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐。


    #define __u8    unsigned char
    #define __u16   unsigned short

    /* __attribute__ ((packed)) 的位置约束是放于声明的尾部“;”之前 */
    struct str_struct{
            __u8    a;
            __u8    b;
            __u8    c;
            __u16   d;
    } __attribute__ ((packed));

    /*  当用到typedef时,要特别注意__attribute__ ((packed))放置的位置,相当于:
      *  typedef struct str_stuct str;
      *  而struct str_struct 就是上面的那个结构。
      */
    typedef struct {
            __u8    a;
            __u8    b;
            __u8    c;
            __u16   d;
    } __attribute__ ((packed)) str;

    /* 在下面这个typedef结构中,__attribute__ ((packed))放在结构名str_temp之后,其作用是被忽略的,注意与结构str的区别。*/
    typedef struct {
            __u8    a;
            __u8    b;
            __u8    c;
            __u16   d;
    }str_temp __attribute__ ((packed));

    typedef struct {
            __u8    a;
            __u8    b;
            __u8    c;
            __u16   d;
    }str_nopacked;

    int main(void)
    {
            printf("sizeof str_struct   = %d/n", sizeof(struct str_struct));
            printf("sizeof str          = %d/n", sizeof(str));
            printf("sizeof str_temp      = %d/n", sizeof(str_temp));
            printf("sizeof str_nopacked = %d/n", sizeof(str_nopacked));
            return 0;
    }

    编译运行:
    [root@localhost root]# ./packedtest   
    sizeof str_struct   = 5 
    sizeof str          = 5
    sizeof str_temp      = 6
    sizeof str_nopacked = 6

    --------------------------------------------------------------------
    GNU C的一大特色就是__attribute__机制。__attribute__可以设置函数属性(Function Attribute)、变量属性(Variable Attribute)和类型属性(Type Attribute)。
    __attribute__ 书写特征是:__attribute__前后都有两个下划线,并且后面会紧跟一对括弧,括弧里面是相应的__attribute__参数。
    __attribute__ 语法格式为:

    __attribute__ ((attribute-list))

    其位置约束:放于声明的尾部“;”之 前。

    函数属性(Function Attribute):函数属性可以帮助开发者把一些特性添加到函数声明中,从而可以使编译器在错误检查方面的功能更强大。__attribute__机 制也很容易同非GNU应用程序做到兼容之功效。

    GNU CC需要使用 –Wall编译器来击活该功能,这是控制警告信息的一个很好的方式。

    packed属性:使用该属性可以使得变量或者结构体成员使用最小的对齐方式,即对变量是一字节对齐,对域(field)是位对齐。

    //--补充

    今天移植usb驱动到uboot中,就发现这个问题。在ads1.2 中用__packed修饰的,我一开始把它去掉了。搞了2天没搞出来。后来才发现是这个问题

    #pragma pack(n) 对齐用法详解

    什么是对齐,以及为什么要对齐: 
    现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。 
    对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。其他平台可能没有这种情况, 但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为 32位系统)如果存放在偶地址开始的地方,那么一个读周期就可以读出,而如果存放在奇地址开始的地方,就可能会需要2个读周期,并对两次读出的结果的高低 字节进行拼凑才能得到该int数据。显然在读取效率上下降很多。这也是空间和时间的博弈。 
    对齐的实现 
    通常,我们写程序的时候,不需要考虑对齐问题。编译器会替我们选择时候目标平台的对齐策略。当然,我们也可以通知给编译器传递预编译指令而改变对指定数据的对齐方法。 
    但是,正因为我们一般不需要关心这个问题,所以因为编辑器对数据存放做了对齐,而我们不了解的话,常常会对一些问题感到迷惑。最常见的就是struct数据结构的sizeof结果,出乎意料。为此,我们需要对对齐算法所了解。
      

    作用:
    指定结构体、联合以及类成员的packing alignment;

    语法:
    #pragma pack( [show] | [push | pop] [, identifier], n )

    说明:
    1,pack提供数据声明级别的控制,对定义不起作用;
    2,调用pack时不指定参数,n将被设成默认值;
    3,一旦改变数据类型的alignment,直接效果就是占用memory的减少,但是performance会下降

    语法具体分析:
    1,show:可选参数;显示当前packing aligment的字节数,以warning message的形式被显示;
    2,push:可选参数;将当前指定的packing alignment数值进行压栈操作,这里的栈是the internal compiler stack,同时设置当前的packing alignment为n;如果n没有指定,则将当前的packing alignment数值压栈;
    3,pop:可选参数;从internal compiler stack中删除最顶端的record;如果没有指定n,则当前栈顶record即为新的packing alignment数值;如果指定了n,则n将成为新的packing aligment数值;如果指定了identifier,则internal compiler stack中的record都将被pop直到identifier被找到,然后pop出identitier,同时设置packing alignment数值为当前栈顶的record;如果指定的identifier并不存在于internal compiler stack,则pop操作被忽略;
    4,identifier:可选参数;当同push一起使用时,赋予当前被压入栈中的record一个名称;当同pop一起使用时,从internal compiler stack中pop出所有的record直到identifier被pop出,如果identifier没有被找到,则忽略pop操作;
    5,n:可选参数;指定packing的数值,以字节为单位;缺省数值是8,合法的数值分别是1、2、4、8、16。

    重要规则:
    1,复杂类型中各个成员按照它们被声明的顺序在内存中顺序存储,第一个成员的地址和整个类型的地址相同;
    2,每个成员分别对齐,即每个成员按自己的方式对齐,并最小化长度;规则就是每个成员按其类型的对齐参数(通常是这个类型的大小)和指定对齐参数较小的一个对齐;
    3,结构、联合或者类的数据成员,第一个放在偏移为0的地方;以后每个数据成员的对齐,按照#pragma pack指定的数值和这个数据成员自身长度两个中比较小的那个进行;也就是说,当#pragma pack指定的值等于或者超过所有数据成员长度的时候,这个指定值的大小将不产生任何效果;
    4,复杂类型(如结构)整体的对齐<注意是“整体”>是按照结构体中长度最大的数据成员和#pragma pack指定值之间较小的那个值进行;这样在成员是复杂类型时,可以最小化长度;
    5,结构整体长度的计算必须取所用过的所有对齐参数的整数倍,不够补空字节;也就是取所用过的所有对齐参数中最大的那个值的整数倍,因为对齐参数都是2的n次方;这样在处理数组时可以保证每一项都边界对齐;

    对齐的算法: 
    由于各个平台和编译器的不同,现以本人使用的gcc version 3.2.2编译器(32位x86平台)为例子,来讨论编译器对struct数据结构中的各成员如何进行对齐的。   

    相同的对齐方式下,结构体内部数据定义的顺序不同,结构体整体占据内存空间也不同,如下: 
    设结构体如下定义: 
    struct A 

         int      a; 
         char    b; 
         short c; 
    }; 
    结构体A中包含了4字节长度的int一个,1字节长度的char一个和2字节长度的short型数据一个。所以A用到的空间应该是7字节。但是因为编译器要对数据成员在空间上进行对齐。所以使用sizeof(strcut A)值为8。 
    现在把该结构体调整成员变量的顺序。 
    struct 

         char    b; 
          int      a; 
          short c; 
    }; 
    这时候同样是总共7个字节的变量,但是sizeof(struct B)的值却是12。 
    下面我们使用预编译指令#progma pack (value)来告诉编译器,使用我们指定的对齐值来取代缺省的。 
    #progma pack (2) /*指定按2字节对齐,等价于#pragma pack(push,2)*/ 
    struct C 

          char b; 
         int      a; 
         short c; 
    }; 
    #progma pack () /*取消指定对齐,恢复缺省对齐,等价于#pragma pack(pop)*/ 
    sizeof(struct C)值是8。 

    修改对齐值为1: 
    #progma pack (1) /*指定按1字节对齐*/ 
    struct D 

          char b; 
          int      a; 
          short c; 
    }; 
    #progma pack () /*取消指定对齐,恢复缺省对齐*/ 
    sizeof(struct D)值为7。 

    对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。
      

    这里面有四个概念值: 
    1.数据类型自身的对齐值:就是上面交代的基本数据类型的自身对齐值。 
    2.指定对齐值:#progma pack (value)时的指定对齐值value。 
    3.结构体或者类的自身对齐值:其数据成员中自身对齐值最大的那个值。 
    4.数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中的那个值。 
    有了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是表示“对齐在N上”,也就是说该数据的"存放起始地址%N=0". 而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是数据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根 据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整数倍,结合下面例子理解)。这样就不能理解上面的几个例子的值了。 
    例子分析: 
    分析例子B; 
    struct B 

          char b; 
          int      a; 
         short c; 
    }; 
    假设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4

    第一个成员变量b的自身对齐值是1,比指定或者默认指定对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.

    第二个成员变量a,其自身对齐值为4,所以有效对齐值也为4,所以只能存放在起始地址为0x00040x0007这四个连续的字节空间中,符合0x0004%4=0, 且紧靠第一个变量。

    第三个变量c,自身对齐值为2,所以有效对齐值也是2,可以存放在0x00080x0009这两个字节空间中,符合0x0008%2=0。所以从0x0000到0x0009存放的都是B内容。

    再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求,0x0009到0x0000=10字节,(10+2)%4=0。所以0x0000A0x000B也为结构体B所占用。故B从0x0000到0x000B共有12个字节,sizeof(struct B)=12

    同理,分析上面例子C: 
    #progma pack (2) /*指定按2字节对齐*/ 
    struct C 

          char    b; 
         int      a; 
         short c; 
    }; 
    #progma pack () /*取消指定对齐,恢复缺省对齐*/ 
    第一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么b存放在0x0000,符合0x0000%1=0;

    第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x0002、0x0003、0x0004、0x0005四个连续字节中,符合0x0002%2=0。

    第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放在0x0006、0x0007中,符合0x0006%2=0。所以从0x0000到0x00007共八字节存放的是C的变量。

    又C的自身对齐值为4,所以C的有效对齐值为2。又8%2=0,C只占用0x0000到0x0007的八个字节。所以sizeof(struct C)=8.

    关于C语言中的结构体对齐问题

    1,比如:

    struct{
    short a1;
    short a2;
    short a3;
    }A;
    struct{
    long a1;
    short a2;
    }B;
    sizeof( A)=6, sizeof( B)=8,为什么?
    注:sizeof(short)=2,sizeof(long)=4

    因为:“成员对齐有一个重要的条件,即每个成员按自己的方式对齐.其对齐的规则是,每个成员按其类型的对齐参数(通常是这个类型的大小)和指定对齐参数(这里默认是8字节)中较小的一个对齐.并且结构的长度必须为所用过的所有对齐参数的整数倍,不够就补空字节.”(引用)
    结构体A中有3个short类型变量,各自以2字节对齐,结构体对齐参数按默认的8字节对齐,则a1,a2,a3都取2字节对齐,则sizeof(A)为6,其也是2的整数倍;
    B中a1为4字节对齐,a2为2字节对齐,结构体默认对齐参数为8,则a1取4字节对齐,a2取2字节对齐,结构体大小6字节,6不为4的整数倍,补空字节,增到8时,符合所有条件,则sizeof(B)为8;

    可以设置成对齐的
    #pragma pack(1)
    #pragma pack(push)
    #pragma pack(1)
    struct{
    short a1;
    short a2;
    short a3;
    }A;
    struct{
    long a1;
    short a2;
    }B;
    #pragma pack(pop)        结果为sizeof( A)=6,sizeof( B)=6

    ************************

    2,又如:

    #pragma pack(8)
    struct S1{
        char a;
        long b;
    };
    struct S2 {
        char c;
        struct S1 d;
        long long e;
    };
    #pragma pack()
    sizeof(S2)结果为24.
    成员对齐有一个重要的条件,即每个成员分别对齐.即每个成员按自己的方式对齐.
    也就是说上面虽然指定了按8字节对齐,但并不是所有的成员都是以8字节对齐.其对齐的规则是,每个成员按其类型的对齐参数(通常是这个类型的大小)和指定对齐参数(这里是8字节)中较小的一个对齐.并且结构的长度必须为所用过的所有对齐参数的整数倍,不够就补空字节.
    S1中,成员a是1字节默认按1字节对齐,指定对齐参数为8,这两个值中取1,a按1字节对齐;成员b是4个字节,默认是按4字节对齐,这时就按4字节对齐,所以sizeof(S1)应该为8;
    S2 中,c和S1中的a一样,按1字节对齐,而d 是个结构,它是8个字节,它按什么对齐呢?对于结构来说,它的默认对齐方式就是它的所有成员使用的对齐参数中最大的一个,S1的就是4.所以,成员d就是 按4字节对齐.成员e是8个字节,它是默认按8字节对齐,和指定的一样,所以它对到8字节的边界上,这时, 已经使用了12个字节了,所以又添加了4个字节的空,从第16个字节开始放置成员e.这时,长度为24,已经可以被8(成员e按8字节对齐)整除.这样, 一共使用了24个字节.
                                   a      b
    S1的内存布局:1***, 1111,
                              c      S1.a    S1.b             e
    S2的内存布局:1***, 1***,   1111, ****11111111

    这里有三点很重要:
    1.每个成员分别按自己的方式对齐,并能最小化长度
    2.复杂类型(如结构)的默认对齐方式是它最长的成员的对齐方式,这样在成员是复杂类型时,可以最小化长度
    3.对齐后的长度必须是成员中最大的对齐参数的整数倍,这样在处理数组时可以保证每一项都边界对齐

    补充一下,对于数组,比如:
    char a[3];这种,它的对齐方式和分别写3个char是一样的.也就是说它还是按1个字节对齐.
    如果写: typedef char Array3[3];
    Array3这种类型的对齐方式还是按1个字节对齐,而不是按它的长度.
    不论类型是什么,对齐的边界一定是1,2,4,8,16,32,64....中的一个. 

    /***********************/
    字节对齐详解
    为什么要对齐?
        现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。
        对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问 一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对 数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那 么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数 据。显然在读取效率上下降很多。

    二.字节对齐对程序的影响:
        先让我们看几个例子吧(32bit,x86环境,gcc编译器):
    设结构体如下定义:
    struct A
    {
        int a;
        char b;
        short c;
    };
    struct B
    {
        char b;
        int a;
        short c;
    };
    现在已知32位机器上各种数据类型的长度如下:
    char:1(有符号无符号同)    
    short:2(有符号无符号同)    
    int:4(有符号无符号同)    
    long:4(有符号无符号同)    
    float:4    double:8
    那么上面两个结构大小如何呢?
    结果是:
    sizeof(strcut A)值为8
    sizeof(struct B)的值却是12

    结构体A中包含了4字节长度的int一个,1字节长度的char一个和2字节长度的short型数据一个,B也一样;按理说A,B大小应该都是7字节。
    之所以出现上面的结果是因为编译器要对数据成员在空间上进行对齐。上面是按照编译器的默认设置进行对齐的结果,那么我们是不是可以改变编译器的这种默认对齐设置呢,当然可以.例如:
    #pragma pack (2) /*指定按2字节对齐*/
    struct C
    {
        char b;
        int a;
        short c;
    };
    #pragma pack () /*取消指定对齐,恢复缺省对齐*/
    sizeof(struct C)值是8。
    修改对齐值为1:
    #pragma pack (1) /*指定按1字节对齐*/
    struct D
    {
        char b;
        int a;
        short c;
    };
    #pragma pack () /*取消指定对齐,恢复缺省对齐*/
    sizeof(struct D)值为7。
    后面我们再讲解#pragma pack()的作用.

    三.编译器是按照什么样的原则进行对齐的?
        先让我们看四个重要的基本概念:
    1.数据类型自身的对齐值:
    对于char型数据,其自身对齐值为1,

    对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。
    2.结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值。
    3.指定对齐值:#pragma pack (value)时的指定对齐值value。
    4.数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中小的那个值。
    有 了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是 表示“对齐在N上”,也就是说该数据的"存放起始地址%N=0".而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是数 据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整数 倍,结合下面例子理解)。这样就不能理解上面的几个例子的值了。
    例子分析:
    分析例子B;
    struct B
    {
        char b;
        int a;
        short c;
    };
    假 设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4。第一个成员变量b的自身对齐值是1,比指定或者默认指定 对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.第二个成员变量a,其自身对齐值为4,所以有效对齐值也为4, 所以只能存放在起始地址为0x0004到0x0007这四个连续的字节空间中,复核0x0004%4=0,且紧靠第一个变量。第三个变量c,自身对齐值为 2,所以有效对齐值也是2,可以存放在0x0008到0x0009这两个字节空间中,符合0x0008%2=0。所以从0x0000到0x0009存放的 都是B内容。再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求, 0x0009到0x0000=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0x0000到0x000B 共有12个字节,sizeof(struct B)=12;其实如果就这一个就来说它已将满足字节对齐了, 因为它的起始地址是0,因此肯定是对齐的,之所以在后面补充2个字节,是因为编译器为了实现结构数组的存取效率,试想如果我们定义了一个结构B的数组,那 么第一个结构起始地址是0没有问题,但是第二个结构呢?按照数组的定义,数组中所有元素都是紧挨着的,如果我们不把结构的大小补充为4的整数倍,那么下一 个结构的起始地址将是0x0000A,这显然不能满足结构的地址对齐了,因此我们要把结构补充成有效对齐大小的整数倍.其实诸如:对于char型数据,其 自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,这些已有类型的自身对齐值也是基于数组考虑的,只 是因为这些类型的长度已知了,所以他们的自身对齐值也就已知了.
    同理,分析上面例子C:
    #pragma pack (2) /*指定按2字节对齐*/
    struct C
    {
        char b;
        int a;
        short c;
    };
    #pragma pack () /*取消指定对齐,恢复缺省对齐*/
    第 一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么b存放在0x0000,符合0x0000%1= 0;第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x0002、0x0003、0x0004、0x0005四个连续 字节中,符合0x0002%2=0。第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放
    在0x0006、0x0007中,符合 0x0006%2=0。所以从0x0000到0x00007共八字节存放的是C的变量。又C的自身对齐值为4,所以C的有效对齐值为2。又8%2=0,C 只占用0x0000到0x0007的八个字节。所以sizeof(struct C)=8.

    四.如何修改编译器的默认对齐值?
    1.在VC IDE中,可以这样修改:[Project]|[Settings],c/c++选项卡Category的Code Generation选项的Struct Member Alignment中修改,默认是8字节。
    2.在编码时,可以这样动态修改:#pragma pack .注意:是pragma而不是progma.

    五.针对字节对齐,我们在编程中如何考虑?

        如果在编程的时候要考虑节约空间的话,那么我们只需要假定结构的首地址是0,然后各个变量按照上面的原则进行排列即可,基本的原则就是把结构中的变量按照 类型大小从小到大声明,

    尽量减少中间的填补空间.还有一种就是为了以空间换取时间的效率,我们显示的进行填补空间进行对齐,比如:有一种使用空间换时间做 法是显式的插入reserved成员:
             struct A{
               char a;
               char reserved[3];//使用空间换时间
               int b;
    }

    reserved成员对我们的程序没有什么意义,它只是起到填补空间以达到字节对齐的目的,当然即使不加这个成员通常编译器也会给我们自动填补对齐,我们自己加上它只是起到显式的提醒作用.

    六.字节对齐可能带来的隐患:
        代码中关于对齐的隐患,很多是隐式的。比如在强制类型转换的时候。例如:
    unsigned int i = 0x12345678;
    unsigned char *p=NULL;
    unsigned short *p1=NULL;

    p=&i;
    *p=0x00;
    p1=(unsigned short *)(p+1);
    *p1=0x0000;
    最后两句代码,从奇数边界去访问unsignedshort型变量,显然不符合对齐的规定。
    在x86上,类似的操作只会影响效率,但是在MIPS或者sparc上,可能就是一个error,因为它们要求必须字节对齐.

    七.如何查找与字节对齐方面的问题:
    如果出现对齐或者赋值问题首先查看
    1. 编译器的big little端设置
    2. 看这种体系本身是否支持非对齐访问
    3. 如果支持看设置了对齐与否,如果没有则看访问时需要加某些特殊的修饰来标志其特殊访问操作。

    ARM下的对齐处理 
    from DUI0067D_ADS1_2_CompLib

    3.13 type qulifiers

    有部分摘自ARM编译器文档对齐部分

    对齐的使用:
    1.__align(num)
       这个用于修改最高级别对象的字节边界。在汇编中使用LDRD或者STRD时
       就要用到此命令__align(8)进行修饰限制。来保证数据对象是相应对齐。
       这个修饰对象的命令最大是8个字节限制,可以让2字节的对象进行4字节
       对齐,但是不能让4字节的对象2字节对齐。
       __align是存储类修改,他只修饰最高级类型对象不能用于结构或者函数对象。
       
    2.__packed 
    __packed是进行一字节对齐
    1.不能对packed的对象进行对齐
    2.所有对象的读写访问都进行非对齐访问
    3.float及包含float的结构联合及未用__packed的对象将不能字节对齐
    4.__packed对局部整形变量无影响
    5.强制由unpacked对象向packed对象转化是未定义,整形指针可以合法定
    义为packed。
         __packed int* p; //__packed int 则没有意义
    6.对齐或非对齐读写访问带来问题
    __packed struct STRUCT_TEST
    {
    char a;
    int b;
    char c;
    } ;    //定义如下结构此时b的起始地址一定是不对齐的
             //在栈中访问b可能有问题,因为栈上数据肯定是对齐访问[from CL]
    //将下面变量定义成全局静态不在栈上 
    static char* p;
    static struct STRUCT_TEST a;
    void Main()
    {
    __packed int* q; //此时定义成__packed来修饰当前q指向为非对齐的数据地址下面的访问则可以

    p = (char*)&a;          
    q = (int*)(p+1);      

    *q = 0x87654321; 
    /*   
    得到赋值的汇编指令很清楚
    ldr      r5,0x20001590 ; = #0x12345678
    [0xe1a00005]   mov      r0,r5
    [0xeb0000b0]   bl       __rt_uwrite4 //在此处调用一个写4byte的操作函数 
          
    [0xe5c10000]   strb     r0,[r1,#0]   //函数进行4次strb操作然后返回保证了数据正确的访问
    [0xe1a02420]   mov      r2,r0,lsr #8
    [0xe5c12001]   strb     r2,[r1,#1]
    [0xe1a02820]   mov      r2,r0,lsr #16
    [0xe5c12002]   strb     r2,[r1,#2]
    [0xe1a02c20]   mov      r2,r0,lsr #24
    [0xe5c12003]   strb     r2,[r1,#3]
    [0xe1a0f00e]   mov      pc,r14
    */

    /*
    如果q没有加__packed修饰则汇编出来指令是这样直接会导致奇地址处访问失败
    [0xe59f2018]   ldr      r2,0x20001594 ; = #0x87654321
    [0xe5812000]   str      r2,[r1,#0]
    */

    //这样可以很清楚的看到非对齐访问是如何产生错误的
    //以及如何消除非对齐访问带来问题
    //也可以看到非对齐访问和对齐访问的指令差异导致效率问题
    }

  • 相关阅读:
    CYQ.Data 轻量数据层之路 V4.0 版本发布
    基于MSAA的自动化封装和设计—python版(转)
    【自然框架】之鼠标点功能现(二):表单控件的“应用”—— 代码?只写需要的!
    论管理员的不作为!!!
    【自然框架】之通用权限的Demo(二):添加人员、添加账户、添加角色里面的账户以及列表的权限验证
    使用接口来统一控件的取值、赋值和初始化
    【自然框架】之通用权限(八):权限到字段(列表、表单、查询)
    辩论赛 VS 讨论组
    【自然框架】表单控件 之 一个表单修改多个表里的记录
    【自然框架】之“解耦”初探
  • 原文地址:https://www.cnblogs.com/yuzaipiaofei/p/4124144.html
Copyright © 2011-2022 走看看