要想正确地执行2440的外部中断,一般需要完成两个部分内容:中断初始化和中断处理函数。 在具体执行中断之前,要初始化好要用的中断。2440的外部中断引脚EINT与通用IO引脚F和G复用,要想使用中断功能,就要把相应的引脚配置成中断模式,如我们想把端口F0设置成外部中断,而其他引脚功能不变,则GPFCON=(GPFCON & ~0x3) | 0x2。配置完引脚后,还需要配置具体的中断功能。我们要打开某一中断的屏蔽,这样才能响应该中断,相对应的寄存器为INTMSK;还要设置外部中断的触发方式,如低电平、高电平、上升沿、下降沿等,相对应的寄存器为EXTINTn。另外由于EINT4到EINT7共用一个中断向量,EINT8到EINT23也共用一个中断向量,而INTMSK只负责总的中断向量的屏蔽,要具体打开某一具体的中断屏蔽,还需要设置EINTMASK。上面介绍的是最基本的初始化,当然还有一些其他的配置,如当需要用到快速中断时,要使用INTMOD,当需要配置中断优先级时,要使用PRIORITY等。 中断处理函数负责执行具体的中断指令,除此以外还需要把SRCPND和INTPND中的相应的位清零(通过置1来清零),因为当中断发生时,2440会自动把这两个寄存器中相对应的位置1,以表示某一中断发生,如果不在中断处理函数内把它们清零,系统会一直执行该中断函数。另外还是由于前面介绍过的,有一些中断是共用一个中断向量的,而一个中断向量只能有一个中断执行函数,因此具体是哪个外部中断,还需要EINTPEND来判断,并同样还要通过置1的方式把相应的位清零。一般来说,使用__irq这个关键词来定义中断处理函数,这样系统会为我们自动保存一些必要的变量,并能够在中断处理函数执行完后正确地返回。还需要注意的是,中断处理函数不能有返回值,也不能传递任何参数。 为了把这个中断处理函数与在2440启动文件中定义的中断向量表相对应上,需要先定义中断入口地址变量,该中断入口地址必须与中断向量表中的地址一致,然后把该中断处理函数的首地址传递给该变量,即中断入口地址。 下面就是一个外部中断的实例。开发板上一共有四个按键,分别连到了EINT0,EINT1,EINT2和EINT4,我们让这四个按键分别控制连接在B5~B8引脚上的四个LED:按一下键则LED亮,再按一下则灭: #define _ISR_STARTADDRESS 0x33ffff00 #define U32 unsigned int #define pISR_EINT0 (*(unsigned *)(_ISR_STARTADDRESS+0x20)) #define pISR_EINT1 (*(unsigned *)(_ISR_STARTADDRESS+0x24)) #define pISR_EINT2 (*(unsigned *)(_ISR_STARTADDRESS+0x28)) #define pISR_EINT4_7 (*(unsigned *)(_ISR_STARTADDRESS+0x30)) #define rSRCPND (*(volatile unsigned *)0x4a000000) //Interrupt request status #define rINTMSK (*(volatile unsigned *)0x4a000008) //Interrupt mask control #define rINTPND (*(volatile unsigned *)0x4a000010) //Interrupt request status #define rGPBCON (*(volatile unsigned *)0x56000010) //Port B control #define rGPBDAT (*(volatile unsigned *)0x56000014) //Port B data #define rGPBUP (*(volatile unsigned *)0x56000018) //Pull-up control B #define rGPFCON (*(volatile unsigned *)0x56000050) //Port F control #define rEXTINT0 (*(volatile unsigned *)0x56000088) //External interrupt control register 0 #define rEINTMASK (*(volatile unsigned *)0x560000a4) //External interrupt mask #define rEINTPEND (*(volatile unsigned *)0x560000a8) //External interrupt pending static void __irq Key1_ISR(void) //EINT1 { int led; rSRCPND = rSRCPND | (0x1<<1); rINTPND = rINTPND | (0x1<<1); led = rGPBDAT & (0x1<<5); if (led ==0) rGPBDAT = rGPBDAT | (0x1<<5); else rGPBDAT = rGPBDAT & ~(0x1<<5); } static void __irq Key2_ISR(void) //EINT4 { int led; rSRCPND = rSRCPND | (0x1<<4); rINTPND = rINTPND | (0x1<<4); if(rEINTPEND&(1<<4)) { rEINTPEND = rEINTPEND | (0x1<<4); led = rGPBDAT & (0x1<<6); if (led ==0) rGPBDAT = rGPBDAT | (0x1<<6); else rGPBDAT = rGPBDAT & ~(0x1<<6); } } static void __irq Key3_ISR(void) //EINT2 { int led; rSRCPND = rSRCPND | (0x1<<2); rINTPND = rINTPND | (0x1<<2); led = rGPBDAT & (0x1<<7); if (led ==0) rGPBDAT = rGPBDAT | (0x1<<7); else rGPBDAT = rGPBDAT & ~(0x1<<7); } void __irq Key4_ISR(void) //EINT0 { int led; rSRCPND = rSRCPND | 0x1; rINTPND = rINTPND | 0x1; led = rGPBDAT & (0x1<<8); if (led ==0) rGPBDAT = rGPBDAT | (0x1<<8); else rGPBDAT = rGPBDAT & ~(0x1<<8); } void Main(void) { int light; rGPBCON = 0x015550; rGPBUP = 0x7ff; rGPFCON = 0xaaaa; rSRCPND = 0x17; rINTMSK = ~0x17; rINTPND =0x17; rEINTPEND = (1<<4); rEINTMASK = ~(1<<4); rEXTINT0 = 0x20222; light = 0x0; rGPBDAT = ~light; pISR_EINT0 = (U32)Key4_ISR; pISR_EINT1 = (U32)Key1_ISR; pISR_EINT2 = (U32)Key3_ISR; pISR_EINT4_7 = (U32)Key2_ISR; while(1) ; }