zoukankan      html  css  js  c++  java
  • 视频目标检测相关

    对于视频来讲,相邻帧目标之间存在 明显的上下文关系,这种关系在技术上的表现就是 Tracking

    FLOW 流,一般是指视频两帧之间的流信息;

    MGP  motion guide propagation 运动指导传播, 主要为了减少漏检;

    MCS  multi context  suppression 多上下文抑制,主要为了减少误检;

    两篇经典论文的原理图:不详细介绍,只是了解以下

    Tubelets with Convolutional Neural Networks for Object Detection from Videos

     主要是tubelet re-scoring模块;

    步骤分为:

    a)High Confidence Tracking       对高置信度的目标进行跟踪

    b)Spatial Max-pooing                空间最大值采样,根据 Tracking结果,对每个Location在其周围进行 Detection 的目标比对,IOU>0.5 被重新定义为目标位置。

    c)Tubelet classification and rescoring    根据 Tracking 目标串的 Top-k 进行分类,并映射到 Positive[0.5,1]和 Negative [0,0.5],可以有效增加正负样本的 Margin。

    Deep Feature Flow

    结合光流的思路,实现特征图的帧间传播和复用。

  • 相关阅读:
    返回图片宽高比
    3.1/3.2图片上传类
    php获取图片的拍摄及其他数据信息
    上传类
    pathinfo()的用法
    上传并压缩图片
    将数组转化为键值对
    css3判断某个li标签
    禁止滚动条/启用滚动条
    Keepalived + haproxy双机高可用方案
  • 原文地址:https://www.cnblogs.com/ywheunji/p/10996778.html
Copyright © 2011-2022 走看看