- 海森矩阵(Hessian matrix 或 Hessian)
在数学中,海塞矩阵(Hessian matrix 或 Hessian)是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,此函数如下:
如果 f 所有的二阶导数都存在,那么 f 的海塞矩阵即:
- H(f)ij(x) = DiDjf(x)
其中 ,即
-
- 维基百科:地址
二阶偏导数矩阵也就所谓的海赛矩阵(Hessian matrix)
一元函数就是二阶导,多元函数就是二阶偏导组成的矩阵
求向量函数最小值时用的,矩阵正定是最小值存在的充分条件。
经济学中常常遇到求最优的问题,目标函数是多元非线性函数的极值问题尚无一般的求解方法,但判定局部极小值的方法是有的,就是用海赛矩阵,是变量向量二阶偏导数构成的矩阵,矩阵正定是局部极小点的充分条件。
2 . Jacobian(雅可比矩阵)
在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式. 还有, 在代数几何中, 代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群, 曲线可以嵌入其中. 它们全部都以数学家卡尔·雅可比(Carl Jacob, 1804年10月4日-1851年2月18日)命名;英文雅可比量”Jacobian”可以发音为[ja ˈko bi ən]或者[ʤə ˈko bi ən].
雅可比矩阵
雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近. 因此, 雅可比矩阵类似于多元函数的导数.
假设F: Rn→Rm是一个从欧式n维空间转换到欧式m维空间的函数. 这个函数由m个实函数组成:. 这些函数的偏导数(如果存在)可以组成一个m行n列的矩阵, 这就是所谓的雅可比矩阵:
此矩阵表示为:
这个矩阵的第i行是由梯度函数的转置yi(i=1,…,m)表示的.
如果p是Rn中的一点, F在p点可微分, 那么在这一点的导数由JF(p)给出(这是求该点导数最简便的方法). 在此情况下, 由F(p)描述的线性算子即接近点p的F的最优线性逼近, x逼近于p:
F(x)≈F(p)+⋅(x–p)
雅可比行列式
如果m = n, 那么F是从n维空间到n维空间的函数, 且它的雅可比矩阵是一个方块矩阵. 于是我们可以取它的行列式, 称为雅可比行列式.
在某个给定点的雅可比行列式提供了 在接近该点时的表现的重要信息. 例如, 如果连续可微函数F在p点的雅可比行列式不是零, 那么它在该点附近具有反函数. 这称为反函数定理. 更进一步, 如果p点的雅可比行列式是正数, 则F在p点的取向不变;如果是负数, 则F的取向相反. 而从雅可比行列式的绝对值, 就可以知道函数F在p点的缩放因子;这就是为什么它出现在换元积分法中.
对于取向问题可以这么理解, 例如一个物体在平面上匀速运动, 如果施加一个正方向的力F, 即取向相同, 则加速运动, 类比于速度的导数加速度为正;如果施加一个反方向的力F, 即取向相反, 则减速运动, 类比于速度的导数加速度为负.