zoukankan      html  css  js  c++  java
  • 《机器学习》(5)

    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    
    from sklearn.cluster import KMeans
    from sklearn import datasets
    # 生成随机数
    np.random.seed(5)
    # 产生随机数据的中心
    centers = [[1, 1], [-1, -1], [1, -1]]
    # 加载数据
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target
    # 用随机数据,让我们设置我们的 K-Means聚类。
    estimators = {'k_means_iris_3': KMeans(n_clusters=3),
                  'k_means_iris_8': KMeans(n_clusters=8),
                  'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1,
                                                  init='random')}
    
    fignum = 1
    # 绘图
    for name, est in estimators.items():
        # 指定图形尺寸
        fig = plt.figure(fignum, figsize=(4, 3))
        plt.clf()
        ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
    
        plt.cla()
        est.fit(X)
        labels = est.labels_
    
        ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float))
    
        ax.w_xaxis.set_ticklabels([])
        ax.w_yaxis.set_ticklabels([])
        ax.w_zaxis.set_ticklabels([])
        ax.set_xlabel('Petal width')
        ax.set_ylabel('Sepal length')
        ax.set_zlabel('Petal length')
        fignum = fignum + 1
    
    # Plot the ground truth绘制结果
    fig = plt.figure(fignum, figsize=(4, 3))
    plt.clf()
    ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
    
    plt.cla()
    
    for name, label in [('Setosa', 0),
                        ('Versicolour', 1),
                        ('Virginica', 2)]:
        ax.text3D(X[y == label, 3].mean(),
                  X[y == label, 0].mean() + 1.5,
                  X[y == label, 2].mean(), name,
                  horizontalalignment='center',
                  bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))
    # Reorder the labels to have colors matching the cluster results
    # 重新排序标签以使颜色与聚类结果匹配
    y = np.choose(y, [1, 2, 0]).astype(np.float)
    ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y)
    
    ax.w_xaxis.set_ticklabels([])
    ax.w_yaxis.set_ticklabels([])
    ax.w_zaxis.set_ticklabels([])
    ax.set_xlabel('Petal width')
    ax.set_ylabel('Sepal length')
    ax.set_zlabel('Petal length')
    plt.show()
    

      

  • 相关阅读:
    四则运算程序总结
    软件体系结构第三章-解释器风格
    软件工程概论随笔2
    软件体系结构第二章随笔
    软件体系结构第一章随笔
    关于如何衡量个人在各自团队的效率和绩效
    查询sql数据库中表占用的空间大小
    如何调试触发器
    sql server查看某个表上的触发器
    触发器deleted 表和 inserted 表详解
  • 原文地址:https://www.cnblogs.com/ywqtro/p/14350404.html
Copyright © 2011-2022 走看看