zoukankan      html  css  js  c++  java
  • 波士顿房价预测

    from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegression
    from sklearn.datasets import load_boston
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import mean_squared_error
    from sklearn.externals import joblib
    from sklearn.metrics import r2_score
    from sklearn.neural_network import MLPRegressor
    
    import pandas as pd
    import numpy as np
    
    lb = load_boston()
    x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.2)
    
    
    # 为数据增加一个维度,相当于把[1, 5, 10] 变成 [[1, 5, 10],]
    y_train = y_train.reshape(-1, 1)
    y_test = y_test.reshape(-1, 1)
    
    # 进行标准化
    std_x = StandardScaler()
    x_train = std_x.fit_transform(x_train)
    x_test = std_x.transform(x_test)
    
    std_y = StandardScaler()
    y_train = std_y.fit_transform(y_train)
    y_test = std_y.transform(y_test)


    # 正规方程预测
    lr = LinearRegression()
    lr.fit(x_train, y_train)
    print("r2 score of Linear regression is",r2_score(y_test,lr.predict(x_test)))

    #岭回归
    from sklearn.linear_model import RidgeCV
    
    cv = RidgeCV(alphas=np.logspace(-3, 2, 100))
    cv.fit (x_train , y_train)
    print("r2 score of Linear regression is",r2_score(y_test,cv.predict(x_test)))

    #梯度下降
    sgd = SGDRegressor()
    sgd.fit(x_train, y_train)
    print("r2 score of Linear regression is",r2_score(y_test,sgd.predict(x_test)))

    from keras.models import Sequential
    from keras.layers import Dense
    
    #基准NN
    #使用标准化后的数据
    seq = Sequential()
    #构建神经网络模型
    #input_dim来隐含的指定输入数据shape
    #Dense全连接层
    seq.add(Dense(64, activation='relu',input_dim=lb.data.shape[1]))
    seq.add(Dense(64, activation='relu'))
    seq.add(Dense(1, activation='relu'))
    seq.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
    seq.fit(x_train, y_train,  epochs=300, batch_size = 16, shuffle = False)
    score = seq.evaluate(x_test, y_test,batch_size=16) #loss value & metrics values
    print("score:",score)
    print('r2 score:',r2_score(y_test, seq.predict(x_test)))

    #梯度下降sgd = SGDRegressor()sgd.fit(x_train, y_train)print("r2 score of Linear regression is",r2_score(y_test,sgd.predict(x_test)))

  • 相关阅读:
    FFT 和 NTT
    神秘构造题
    P4396 [AHOI2013]作业
    杜教筛学习笔记
    杜教筛
    「$mathcal{Darkbzoj}$」神犇和蒟蒻
    「CQOI2015」选数
    「$mathcal{Atcoder}$」$mathcal{ARC101}$
    「NOI2019」退役记???
    「李超线段树」
  • 原文地址:https://www.cnblogs.com/ywqtro/p/14716887.html
Copyright © 2011-2022 走看看