zoukankan      html  css  js  c++  java
  • 使用TensorFlow完成视频物体的识别

    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    from PIL import Image
    
    from utils import label_map_util
    
    from utils import visualization_utils as vis_util
    
    PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2018_01_28/frozen_inference_graph.pb'
    PATH_TO_LABELS = 'data/mscoco_label_map.pbtxt'
    NUM_CLASSES = 90
    
    detection_graph = tf.Graph()
    
    with detection_graph.as_default():
        od_graph_def = tf.GraphDef()
        with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
            od_graph_def.ParseFromString(fid.read())
            tf.import_graph_def(od_graph_def, name='')
    
    label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
    categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
    category_index = label_map_util.create_category_index(categories)
    
    def load_image_into_numpy_array(image):
        (im_width, im_height) = image.size
        return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
    
    TEST_IMAGE_PATHS = ['test_data/image1.jpg']
    
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph) as sess:
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
            detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
            detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
            num_detections = detection_graph.get_tensor_by_name('num_detections:0')
            for image_path in TEST_IMAGE_PATHS:
                image = Image.open(image_path)
                image_np = load_image_into_numpy_array(image)
                image_np_expanded = np.expand_dims(image_np, axis=0)
                (boxes, scores, classes, num) = sess.run(
                    [detection_boxes, detection_scores, detection_classes, num_detections],
                    feed_dict={image_tensor: image_np_expanded})
                vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
                plt.figure(figsize=[12, 8])
                plt.imshow(image_np)
                plt.show()

  • 相关阅读:
    将文本文档数据导入excel,并生产折线
    worktile 查询已归档任务
    TestFlight下载app 初使用
    app测试之app启动时间计算
    MAC 鼠标没电了,键盘命令行关机
    git和adb安装及常用命令
    max 批量导入obj
    [水煮 ASP.NET Web API2 方法论](3-1)集中式路由
    [水煮 ASP.NET Web API2 方法论](12-4)OData 支持的 Function 和 Action
    [水煮 ASP.NET Web API2 方法论](12-3)OData 查询
  • 原文地址:https://www.cnblogs.com/ywqtro/p/14773170.html
Copyright © 2011-2022 走看看