zoukankan      html  css  js  c++  java
  • 智能换脸

    实验源代码

    import cv2
    import dlib
    import numpy
    import sys
    
    PREDICTOR_PATH = "./shape_predictor_68_face_landmarks.dat"
    SCALE_FACTOR = 1
    FEATHER_AMOUNT = 11
    # 代表各个区域的关键点标号
    FACE_POINTS = list(range(17, 68))
    MOUTH_POINTS = list(range(48, 61))
    RIGHT_BROW_POINTS = list(range(17, 22))
    LEFT_BROW_POINTS = list(range(22, 27))
    RIGHT_EYE_POINTS = list(range(36, 42))
    LEFT_EYE_POINTS = list(range(42, 48))
    NOSE_POINTS = list(range(27, 35))
    JAW_POINTS = list(range(0, 17))
    
    # Points used to line up the images.   17-61
    ALIGN_POINTS = (LEFT_BROW_POINTS + RIGHT_EYE_POINTS + LEFT_EYE_POINTS +
                    RIGHT_BROW_POINTS + NOSE_POINTS + MOUTH_POINTS)
    
    # Points from the second image to overlay on the first. The convex hull of each
    # element will be overlaid.   17-61
    OVERLAY_POINTS = [
        LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS + RIGHT_BROW_POINTS,
        NOSE_POINTS + MOUTH_POINTS,
    ]
    # Amount of blur to use during colour correction, as a fraction of the
    # pupillary distance.
    COLOUR_CORRECT_BLUR_FRAC = 0.6
    
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor(PREDICTOR_PATH)
    
    
    class TooManyFaces(Exception):
        pass
    
    
    class NoFaces(Exception):
        pass
    
    
    # 获取关键点坐标位置,只获取一张人脸
    # input:代表一张图片的numpy array
    # output:68*2的关键点坐标位置matrix
    def get_landmarks(im):
        rects = detector(im, 1)
        if len(rects) > 1:
            raise TooManyFaces
        if len(rects) == 0:
            raise NoFaces
        return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()])
    
    
    def read_im_and_landmarks(fname):
        im = cv2.imread(fname, cv2.IMREAD_COLOR)
        im = cv2.resize(im, (im.shape[1] * SCALE_FACTOR, im.shape[0] * SCALE_FACTOR))
        s = get_landmarks(im)
        return im, s
    
    
    # 注解关键点
    def annotate_landmarks(im, landmarks):
        # 数组切片是原始数组的视图,这意味着数据不会被复制,视图上的任何修改都会被直接反映到源数组上.
        # 若想要得到的是ndarray切片的一份副本而非视图,就需要显式的进行复制操作函数copy()。
        im = im.copy()
        for idx, point in enumerate(landmarks):
            pos = (point[0, 0], point[0, 1])
            cv2.putText(im, str(idx), pos,
                        fontFace=cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,
                        fontScale=0.2,
                        color=(0, 0, 255))
            cv2.circle(im, pos, 1, color=(0, 255, 255))
            cv2.imwrite("landmak.jpg", im)
        return im
    
    
    def draw_convex_hull(im, points, color):
        points = cv2.convexHull(points)  # 检测凸包函数
        cv2.fillConvexPoly(im, points, color=color)  # 绘制好多边形后并填充     点的顺序不同绘制出来的凸包也不同
    
    
    def get_face_mask(im, landmarks):
        im = numpy.zeros(im.shape[:2], dtype=numpy.float64)
    
        # for group in OVERLAY_POINTS:
        #     draw_convex_hull(im,landmarks[group],color=1)
    
        # 11. 下面这行代码用来替代上面两行代码
        draw_convex_hull(im, landmarks, color=1)
        im = numpy.array([im, im, im]).transpose((1, 2, 0))  # 得到一个类似于3通道的图片
    
        # 22. 高斯滤波,注释掉效果更好
        # im = (cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) > 0) * 1.0
        # im = cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0)
        return im
    
    
    # 用普氏分析(Procrustes analysis)调整脸部
    def transformation_from_points(points1, points2):
        """
        Return an affine transformation [s * R | T] such that:返回一个仿射变换矩阵
            sum ||s*R*p1,i + T - p2,i||^2
        is minimized.
        """
        # 通过减去中心id,通过标准偏差进行缩放,然后使用SVD来计算旋转,从而解决了普是问题
        # Solve the procrustes problem by subtracting centroids, scaling by the
        # standard deviation, and then using the SVD to calculate the rotation. See
        # the following for more details:
        #   https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
    
        points1 = points1.astype(numpy.float64)
        points2 = points2.astype(numpy.float64)
        c1 = numpy.mean(points1, axis=0)
        c2 = numpy.mean(points2, axis=0)
        points1 -= c1
        points2 -= c2
        # 计算标准差
        s1 = numpy.std(points1)
        s2 = numpy.std(points2)
        points1 /= s1
        points2 /= s2
        # 通过奇异值分解求得旋转矩阵R
        U, S, Vt = numpy.linalg.svd(points1.T * points2)
    
        # The R we seek is in fact the transpose of the one given by U * Vt. This
        # is because the above formulation assumes the matrix goes on the right
        # (with row vectors) where as our solution requires the matrix to be on the
        # left (with column vectors).
        R = (U * Vt).T  # 维度:2*2
        # 仿射变换矩阵3*3 #  numpy.hstack用来在第1个维度上拼接tup  numpy.vstack在第0个维度上拼接tup
        return numpy.vstack([numpy.hstack(((s2 / s1) * R,
                                           c2.T - (s2 / s1) * R * c1.T)),
                             numpy.matrix([0., 0., 1.])])
    
    
    def warp_im(im, M, dshape):
        output_im = numpy.zeros(dshape, dtype=im.dtype)
        # cv2.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue ]]]])-->dst
        cv2.warpAffine(im, M[:2], (dshape[1], dshape[0]), dst=output_im, borderMode=cv2.BORDER_TRANSPARENT,
                       flags=cv2.WARP_INVERSE_MAP)
        return output_im
    
    
    # 颜色校正
    def correct_colours(im1, im2, landmarks1):
        blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm(
            numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) - numpy.mean(landmarks1[RIGHT_EYE_POINTS], axis=0))
        blur_amount = int(blur_amount)
        if blur_amount % 2 == 0:
            blur_amount += 1
        im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
        im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)
        # Avoid divide-by-zero errors.
        im2_blur += (128 * (im2_blur <= 1.0)).astype(im2_blur.dtype)
        return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) / im2_blur.astype(numpy.float64))
    
    
    im1, landmarks1 = read_im_and_landmarks("1.jpg")
    im2, landmarks2 = read_im_and_landmarks("2.jpg")
    # 44. 参数landmarks1[ALIGN_POINTS]-->landmarks1
    M = transformation_from_points(landmarks1, landmarks2)  # [ALIGN_POINTS]
    
    # get_face_mask()的定义是为一张图像和一个标记矩阵生成一个掩膜
    mask = get_face_mask(im2, landmarks2)
    warped_mask = warp_im(mask, M, im1.shape)
    # 33. 用min函数取掩膜区域效果更好
    combined_mask = numpy.min([get_face_mask(im1, landmarks1), warped_mask], axis=0)
    # 将图像2的掩膜转换到图像1的坐标空间
    warped_im2 = warp_im(im2, M, im1.shape)
    warped_corrected_im2 = correct_colours(im1, warped_im2, landmarks1)
    output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask
    cv2.imwrite('output.jpg', output_im)

  • 相关阅读:
    NOIP 2012 T5 借教室 [洛谷P1083]
    POJ2437 Muddy roads
    POJ2288 Islands and Bridges
    洛谷P2014 TYVJ1051 选课
    POJ1741 Tree
    CODEVS1995 || TYVJ1863 黑魔法师之门
    TYVJ1939 玉蟾宫
    TYVJ1305 最大子序和
    POJ1737 Connected Graph
    TYVJ1864 守卫者的挑战
  • 原文地址:https://www.cnblogs.com/ywqtro/p/14779370.html
Copyright © 2011-2022 走看看