from __future__ import print_function, division from keras.datasets import mnist from keras.layers import Input, Dense, Reshape, Flatten, Dropout from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import Adam import matplotlib.pyplot as plt import sys import os import numpy as np class GAN(): def __init__(self): # --------------------------------- # # 行28,列28,也就是mnist的shape # --------------------------------- # self.img_rows = 28 self.img_cols = 28 self.channels = 1 # 28,28,1 self.img_shape = (self.img_rows, self.img_cols, self.channels) self.latent_dim = 100 # adam优化器 optimizer = Adam(0.0002, 0.5) self.discriminator = self.build_discriminator() self.discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) self.generator = self.build_generator() gan_input = Input(shape=(self.latent_dim,)) img = self.generator(gan_input) # 在训练generate的时候不训练discriminator self.discriminator.trainable = False # 对生成的假图片进行预测 validity = self.discriminator(img) self.combined = Model(gan_input, validity) self.combined.compile(loss='binary_crossentropy', optimizer=optimizer) def build_generator(self): # --------------------------------- # # 生成器,输入一串随机数字 # --------------------------------- # model = Sequential() model.add(Dense(256, input_dim=self.latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(1024)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(np.prod(self.img_shape), activation='tanh')) model.add(Reshape(self.img_shape)) noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img) def build_discriminator(self): # ----------------------------------- # # 评价器,对输入进来的图片进行评价 # ----------------------------------- # model = Sequential() # 输入一张图片 model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) # 判断真伪 model.add(Dense(1, activation='sigmoid')) img = Input(shape=self.img_shape) validity = model(img) return Model(img, validity) def train(self, epochs, batch_size=128, sample_interval=50): # 获得数据 (X_train, _), (_, _) = mnist.load_data() # 进行标准化 X_train = X_train / 127.5 - 1. X_train = np.expand_dims(X_train, axis=3) # 创建标签 valid = np.ones((batch_size, 1)) fake = np.zeros((batch_size, 1)) for epoch in range(epochs): # --------------------------- # # 随机选取batch_size个图片 # 对discriminator进行训练 # --------------------------- # idx = np.random.randint(0, X_train.shape[0], batch_size) imgs = X_train[idx] noise = np.random.normal(0, 1, (batch_size, self.latent_dim)) gen_imgs = self.generator.predict(noise) d_loss_real = self.discriminator.train_on_batch(imgs, valid) d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # --------------------------- # # 训练generator # --------------------------- # noise = np.random.normal(0, 1, (batch_size, self.latent_dim)) g_loss = self.combined.train_on_batch(noise, valid) print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) if epoch % sample_interval == 0: self.sample_images(epoch) def sample_images(self, epoch): r, c = 5, 5 noise = np.random.normal(0, 1, (r * c, self.latent_dim)) gen_imgs = self.generator.predict(noise) gen_imgs = 0.5 * gen_imgs + 0.5 fig, axs = plt.subplots(r, c) cnt = 0 for i in range(r): for j in range(c): axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray') axs[i,j].axis('off') cnt += 1 fig.savefig("images/%d.png" % epoch) plt.close() if __name__ == '__main__': if not os.path.exists("./images"): os.makedirs("./images") gan = GAN() gan.train(epochs=100, batch_size=256, sample_interval=200)