zoukankan      html  css  js  c++  java
  • state-of-the-art implementations related to visual recognition and search

    http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html

    Source Code


    Non-exhaustive list of state-of-the-art implementations related to visual recognition and search. There is no warranty for the source code links below – use them at your own risk!


    Feature Detection and Description


    General Libraries: 

    • VLFeat – Implementation of various feature descriptors (including SIFT, HOG, and LBP) and covariant feature detectors (including DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris). Easy-to-use Matlab interface. SeeModern features: Software – Slides providing a demonstration of VLFeat and also links to other software. Check also VLFeat hands-on session training
    • OpenCV – Various implementations of modern feature detectors and descriptors (SIFT, SURF, FAST, BRIEF, ORB, FREAK, etc.)

    Fast Keypoint Detectors for Real-time Applications: 

    • FAST – High-speed corner detector implementation for a wide variety of platforms
    • AGAST – Even faster than the FAST corner detector. A multi-scale version of this method is used for the BRISK descriptor (ECCV 2010).

    Binary Descriptors for Real-Time Applications: 

    • BRIEF – C++ code for a fast and accurate interest point descriptor (not invariant to rotations and scale) (ECCV 2010)
    • ORB – OpenCV implementation of the Oriented-Brief (ORB) descriptor (invariant to rotations, but not scale)
    • BRISK – Efficient Binary descriptor invariant to rotations and scale. It includes a Matlab mex interface. (ICCV 2011)
    • FREAK – Faster than BRISK (invariant to rotations and scale) (CVPR 2012)

    SIFT and SURF Implementations: 

    Other Local Feature Detectors and Descriptors: 

    • VGG Affine Covariant features – Oxford code for various affine covariant feature detectors and descriptors.
    • LIOP descriptor – Source code for the Local Intensity order Pattern (LIOP) descriptor (ICCV 2011).
    • Local Symmetry Features – Source code for matching of local symmetry features under large variations in lighting, age, and rendering style (CVPR 2012).

    Global Image Descriptors: 

    • GIST – Matlab code for the GIST descriptor
    • CENTRIST – Global visual descriptor for scene categorization and object detection (PAMI 2011)


    Feature Coding and Pooling 

    • VGG Feature Encoding Toolkit – Source code for various state-of-the-art feature encoding methods – including Standard hard encoding, Kernel codebook encoding, Locality-constrained linear encoding, and Fisher kernel encoding.
    • Spatial Pyramid Matching – Source code for feature pooling based on spatial pyramid matching (widely used for image classification)


    Convolutional Nets and Deep Learning 

    • Caffe – Fast C++ implementation of deep convolutional networks (GPU / CPU / ImageNet 2013 demonstration).
    • OverFeat – C++ library for integrated classification and localization of objects.
    • EBLearn – C++ Library for Energy-Based Learning. It includes several demos and step-by-step instructions to train classifiers based on convolutional neural networks.
    • Torch7 – Provides a matlab-like environment for state-of-the-art machine learning algorithms, including a fast implementation of convolutional neural networks.
    • Deep Learning - Various links for deep learning software.


    Facial Feature Detection and Tracking 

    • IntraFace – Very accurate detection and tracking of facial features (C++/Matlab API).


    Part-Based Models 


    Attributes and Semantic Features 


    Large-Scale Learning 

    • Additive Kernels – Source code for fast additive kernel SVM classifiers (PAMI 2013).
    • LIBLINEAR – Library for large-scale linear SVM classification.
    • VLFeat – Implementation for Pegasos SVM and Homogeneous Kernel map.


    Fast Indexing and Image Retrieval 

    • FLANN – Library for performing fast approximate nearest neighbor.
    • Kernelized LSH – Source code for Kernelized Locality-Sensitive Hashing (ICCV 2009).
    • ITQ Binary codes – Code for generation of small binary codes using Iterative Quantization and other baselines such as Locality-Sensitive-Hashing (CVPR 2011).
    • INRIA Image Retrieval – Efficient code for state-of-the-art large-scale image retrieval (CVPR 2011).


    Object Detection 


    3D Recognition 


    Action Recognition 




    Datasets


    Attributes 

    • Animals with Attributes – 30,475 images of 50 animals classes with 6 pre-extracted feature representations for each image.
    • aYahoo and aPascal – Attribute annotations for images collected from Yahoo and Pascal VOC 2008.
    • FaceTracer – 15,000 faces annotated with 10 attributes and fiducial points.
    • PubFig – 58,797 face images of 200 people with 73 attribute classifier outputs.
    • LFW – 13,233 face images of 5,749 people with 73 attribute classifier outputs.
    • Human Attributes – 8,000 people with annotated attributes. Check also this link for another dataset of human attributes.
    • SUN Attribute Database – Large-scale scene attribute database with a taxonomy of 102 attributes.
    • ImageNet Attributes – Variety of attribute labels for the ImageNet dataset.
    • Relative attributes – Data for OSR and a subset of PubFig datasets. Check also this link for the WhittleSearch data.
    • Attribute Discovery Dataset – Images of shopping categories associated with textual descriptions.


    Fine-grained Visual Categorization 


    Face Detection 

    • FDDB – UMass face detection dataset and benchmark (5,000+ faces)
    • CMU/MIT – Classical face detection dataset.


    Face Recognition 

    • Face Recognition Homepage – Large collection of face recognition datasets.
    • LFW – UMass unconstrained face recognition dataset (13,000+ face images).
    • NIST Face Homepage – includes face recognition grand challenge (FRGC), vendor tests (FRVT) and others.
    • CMU Multi-PIE – contains more than 750,000 images of 337 people, with 15 different views and 19 lighting conditions.
    • FERET – Classical face recognition dataset.
    • Deng Cai’s face dataset in Matlab Format – Easy to use if you want play with simple face datasets including Yale, ORL, PIE, and Extended Yale B.
    • SCFace – Low-resolution face dataset captured from surveillance cameras.


    Handwritten Digits 

    • MNIST – large dataset containing a training set of 60,000 examples, and a test set of 10,000 examples.


    Pedestrian Detection


    Generic Object Recognition 

    • ImageNet – Currently the largest visual recognition dataset in terms of number of categories and images.
    • Tiny Images – 80 million 32x32 low resolution images.
    • Pascal VOC – One of the most influential visual recognition datasets.
    • Caltech 101 / Caltech 256 – Popular image datasets containing 101 and 256 object categories, respectively.
    • MIT LabelMe – Online annotation tool for building computer vision databases.


    Scene Recognition


    Feature Detection and Description 


    Action Recognition


    RGBD Recognition 


  • 相关阅读:
    移动端
    vue2.0实战记录
    vue学习记录
    JS中数字计算精度
    10亿个字符串的排序问题
    <nginx.conf> nginx用户权限
    详解jquery插件中;(function ( $, window, document, undefined )的作用
    nginx服务器安装及配置文件详解
    移动端HTML5<video>视频播放优化实践
    打造自己的html5视频播放器
  • 原文地址:https://www.cnblogs.com/yxwkf/p/4679747.html
Copyright © 2011-2022 走看看