zoukankan      html  css  js  c++  java
  • POJ 2533-Longest Ordered Subsequence(DP)

    Longest Ordered Subsequence
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 34454   Accepted: 15135

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7
    1 7 3 5 9 4 8

    Sample Output

    4
    最长上升子序列。

    。orz 傻逼竟然直接把dp[n]输出了 后来wa了一时还没反应过来。。

    dp[i]代表以i为结尾的最长上升子序列的长度,but dp[n]不一定最长。。事实上整个dp数组就是无序的了。

    能够sort后输出

    O(n*n)渣比写法
    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <string>
    #include <cctype>
    #include <vector>
    #include <cstdio>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #define ll long long
    #define maxn 1010
    #define pp pair<int,int>
    #define INF 0x3f3f3f3f
    #define max(x,y) ( ((x) > (y)) ?

    (x) : (y) ) #define min(x,y) ( ((x) > (y)) ? (y) : (x) ) using namespace std; int n,dp[maxn],a[maxn]; void solve() { for(int i=2;i<=n;i++) for(int j=1;j<i;j++) if(a[i]>a[j]&&dp[i]<=dp[j]) dp[i]=dp[j]+1; sort(dp+1,dp+n+1); printf("%d ",dp[n]); } int main() { while(~scanf("%d",&n)) { for(int i=1;i<=n;i++) { dp[i]=1; scanf("%d",&a[i]); } solve(); } return 0; }

  • 相关阅读:
    1.27
    1.25
    Representation Learning with Contrastive Predictive Coding
    Learning a Similarity Metric Discriminatively, with Application to Face Verification
    噪声对比估计(负样本采样)
    Certified Adversarial Robustness via Randomized Smoothing
    Certified Robustness to Adversarial Examples with Differential Privacy
    Dynamic Routing Between Capsules
    Defending Adversarial Attacks by Correcting logits
    Visualizing Data using t-SNE
  • 原文地址:https://www.cnblogs.com/yxwkf/p/5049127.html
Copyright © 2011-2022 走看看