传送门:【HDU】4888 Redraw Beautiful Drawings
题目分析:
比赛的时候看出是个网络流,可是没有敲出来。各种反面样例推倒自己(究其原因是不愿意写暴力推断的)。。
首先是简单的行列建边。源点向行建边。容量为该行元素和,汇点和列建边。容量为该列元素和。全部的行向全部的列建边,容量为K。
跑一次最大流。满流则有解,否则无解。
接下来是推断解是否唯一。
这个题解压根没看懂。还是暴力大法好。
最简单的思想就是枚举在一个矩形的四个端点。设A、D为主对角线上的端点。B、C为副对角线上的端点。仅仅要A、D不等于k且B、C不等于0,那么有解。
相应的仅仅要B、C不等于k且A、D不等于0,那么相同有解。
那么。枚举全部的矩形复杂度高达O(N^4),太大了,我们须要减少复杂度。
那么我们该怎样减少复杂度?
如今我们设立一个二维数组can[ i ][ j ]表示当前行之前的行中存在一行满足列i的元素不等于0且列j的元素不等于k,那么can[ i ][ j ] = 1,假设本行同样列满足列i不等于k且列j不等于0。那么说明存在多解。否则将can[ j ][ i ]标记为1。然后继续扫描。
上面的过程推断得出是唯一解后,输出解。( i , j )相应的元素为行i到列j的反向边的流量。
代码例如以下:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std ; #define REP( i , a , b ) for ( int i = a ; i < b ; ++ i ) #define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define REV( i , a , b ) for ( int i = a - 1 ; i >= b ; -- i ) #define FOV( i , a , b ) for ( int i = a ; i >= b ; -- i ) #define CLR( a , x ) memset ( a , x , sizeof a ) #define CPY( a , x ) memcpy ( a , x , sizeof a ) const int MAXM = 405 ; const int MAXN = 1005 ; const int MAXQ = 500000 ; const int MAXE = 500000 ; const int INF = 0x3f3f3f3f ; struct Edge { int v , c , n ; Edge () {} Edge ( int v , int c , int n ) : v ( v ) , c ( c ) , n ( n ) {} } ; struct NetWork { Edge E[MAXE] ; int H[MAXN] , cntE ; int d[MAXN] , cur[MAXN] , num[MAXN] , pre[MAXN] ; int Q[MAXQ] , head , tail ; int n , m , k ; int s , t , nv ; int flow ; int row[MAXN] , col[MAXN] ; int G[MAXM][MAXM] ; int can[MAXM][MAXM] ; void init () { cntE = 0 ; CLR ( H , -1 ) ; } void addedge ( int u , int v , int c ) { E[cntE] = Edge ( v , c , H[u] ) ; H[u] = cntE ++ ; E[cntE] = Edge ( u , 0 , H[v] ) ; H[v] = cntE ++ ; } void rev_bfs () { CLR ( d , -1 ) ; CLR ( num , 0 ) ; head = tail = 0 ; Q[tail ++] = t ; d[t] = 0 ; num[d[t]] = 1 ; while ( head != tail ) { int u = Q[head ++] ; for ( int i = H[u] ; ~i ; i = E[i].n ) { int v = E[i].v ; if ( ~d[v] ) continue ; d[v] = d[u] + 1 ; num[d[v]] ++ ; Q[tail ++] = v ; } } } int ISAP () { CPY ( cur , H ) ; rev_bfs () ; flow = 0 ; int u = pre[s] = s , i ; while ( d[s] < nv ) { if ( u == t ) { int f = INF , pos ; for ( i = s ; i != t ; i = E[cur[i]].v ) if ( f > E[cur[i]].c ) { f = E[cur[i]].c ; pos = i ; } for ( i = s ; i != t ; i = E[cur[i]].v ) { E[cur[i]].c -= f ; E[cur[i] ^ 1].c += f ; } flow += f ; u = pos ; } for ( i = cur[u] ; ~i ; i = E[i].n ) if ( E[i].c && d[u] == d[E[i].v] + 1 ) break ; if ( ~i ) { cur[u] = i ; pre[E[i].v] = u ; u = E[i].v ; } else { if ( 0 == ( -- num[d[u]] ) ) break ; int mmin = nv ; for ( i = H[u] ; ~i ; i = E[i].n ) if ( E[i].c && mmin > d[E[i].v] ) { cur[u] = i ; mmin = d[E[i].v] ; } d[u] = mmin + 1 ; num[d[u]] ++ ; u = pre[u] ; } } return flow ; } void put () { printf ( "Unique " ) ; FOR ( i , 1 , n ) FOR ( j , 1 , m ) printf ( "%d%c" , G[i][j] , j < m ? ' ' : ' ' ) ; } void build () { FOR ( u , 1 , n ) for ( int i = H[u] ; ~i ; i = E[i].n ) if ( E[i].v ) G[u][E[i].v - n] = E[i ^ 1].c ; } int check () { CLR ( can , 0 ) ; FOR ( r , 1 , n ) FOR ( i , 1 , m ) FOR ( j , i + 1 , m ) { int tmp1 = 0 , tmp2 = 0 ; if ( G[r][i] != k && G[r][j] != 0 ) { if ( can[i][j] ) return 1 ; tmp1 = 1 ; } if ( G[r][i] != 0 && G[r][j] != k ) { if ( can[j][i] ) return 1 ; tmp2 = 1 ; } if ( tmp1 ) can[j][i] = tmp1 ; if ( tmp2 ) can[i][j] = tmp2 ; } return 0 ; } void solve () { int sum1 = 0 ; int sum2 = 0 ; init () ; s = 0 ; t = n + m + 1 ; nv = t + 1 ; FOR ( i , 1 , n ) { scanf ( "%d" , &row[i] ) ; addedge ( s , i , row[i] ) ; sum1 += row[i] ; } FOR ( i , 1 , m ) { scanf ( "%d" , &col[i] ) ; addedge ( i + n , t , col[i] ) ; sum2 += col[i] ; } FOR ( i , 1 , n ) FOR ( j , 1 , m ) addedge ( i , n + j , k ) ; ISAP () ; if ( flow != sum1 || flow != sum2 ) { printf ( "Impossible " ) ; return ; } build () ; int multi = check () ; if ( multi ) printf ( "Not Unique " ) ; else put () ; } } nw ; int main () { while ( ~scanf ( "%d%d%d" , &nw.n , &nw.m , &nw.k ) ) nw.solve () ; return 0 ; }
题解依然没看懂,可是DFS的方法会了。思想和上面的类似,用回溯的思想找环。可知长度等于2的环是不可行的(由于两个点都是自己),必须是长度大于等于4的环(能形成环必然长度为偶数)。我们仅仅要对每一行回溯搜索,假设沿着行到列还有流容量能够降低(属于的元素能够变大)或者列到行还有容量能够降低(即行到列还有容量能够添加,属于的元素能够变小)的边走能找到环就说明多解。
代码例如以下:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std ; #define REP( i , a , b ) for ( int i = a ; i < b ; ++ i ) #define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define REV( i , a , b ) for ( int i = a - 1 ; i >= b ; -- i ) #define FOV( i , a , b ) for ( int i = a ; i >= b ; -- i ) #define CLR( a , x ) memset ( a , x , sizeof a ) #define CPY( a , x ) memcpy ( a , x , sizeof a ) const int MAXM = 1005 ; const int MAXN = 1005 ; const int MAXQ = 2000000 ; const int MAXE = 2000000 ; const int INF = 0x3f3f3f3f ; struct Edge { int v , c , n ; Edge () {} Edge ( int v , int c , int n ) : v ( v ) , c ( c ) , n ( n ) {} } ; struct NetWork { Edge E[MAXE] ; int H[MAXN] , cntE ; int d[MAXN] , cur[MAXN] , num[MAXN] , pre[MAXN] ; int Q[MAXQ] , head , tail ; int n , m , k ; int s , t , nv ; int flow ; int row[MAXN] , col[MAXN] ; int G[MAXM][MAXM] ; int vis[MAXN] ; void init () { cntE = 0 ; CLR ( H , -1 ) ; } void addedge ( int u , int v , int c ) { E[cntE] = Edge ( v , c , H[u] ) ; H[u] = cntE ++ ; E[cntE] = Edge ( u , 0 , H[v] ) ; H[v] = cntE ++ ; } void rev_bfs () { CLR ( d , -1 ) ; CLR ( num , 0 ) ; head = tail = 0 ; Q[tail ++] = t ; d[t] = 0 ; num[d[t]] = 1 ; while ( head != tail ) { int u = Q[head ++] ; for ( int i = H[u] ; ~i ; i = E[i].n ) { int v = E[i].v ; if ( ~d[v] ) continue ; d[v] = d[u] + 1 ; num[d[v]] ++ ; Q[tail ++] = v ; } } } int ISAP () { CPY ( cur , H ) ; rev_bfs () ; flow = 0 ; int u = pre[s] = s , i ; while ( d[s] < nv ) { if ( u == t ) { int f = INF , pos ; for ( i = s ; i != t ; i = E[cur[i]].v ) if ( f > E[cur[i]].c ) { f = E[cur[i]].c ; pos = i ; } for ( i = s ; i != t ; i = E[cur[i]].v ) { E[cur[i]].c -= f ; E[cur[i] ^ 1].c += f ; } flow += f ; u = pos ; } for ( i = cur[u] ; ~i ; i = E[i].n ) if ( E[i].c && d[u] == d[E[i].v] + 1 ) break ; if ( ~i ) { cur[u] = i ; pre[E[i].v] = u ; u = E[i].v ; } else { if ( 0 == ( -- num[d[u]] ) ) break ; int mmin = nv ; for ( i = H[u] ; ~i ; i = E[i].n ) if ( E[i].c && mmin > d[E[i].v] ) { cur[u] = i ; mmin = d[E[i].v] ; } d[u] = mmin + 1 ; num[d[u]] ++ ; u = pre[u] ; } } return flow ; } void put () { printf ( "Unique " ) ; FOR ( u , 1 , n ) for ( int i = H[u] ; ~i ; i = E[i].n ) { int v = E[i].v ; G[u][v - n] = E[i ^ 1].c ; } FOR ( i , 1 , n ) FOR ( j , 1 , m ) printf ( "%d%c" , G[i][j] , j < m ? ' ' : ' ' ) ; } int dfs ( int u , int fa ) { if ( vis[u] ) return 1 ; vis[u] = 1 ; for ( int i = H[u] ; ~i ; i = E[i].n ) { int v = E[i].v ; if ( v != fa && E[i].c && v != s && v != t ) if ( dfs ( v , u ) ) return 1 ; } vis[u] = 0 ; return 0 ; } void solve () { int sum1 = 0 ; int sum2 = 0 ; init () ; s = 0 ; t = n + m + 1 ; nv = t + 1 ; FOR ( i , 1 , n ) { scanf ( "%d" , &row[i] ) ; addedge ( s , i , row[i] ) ; sum1 += row[i] ; } FOR ( i , 1 , m ) { scanf ( "%d" , &col[i] ) ; addedge ( i + n , t , col[i] ) ; sum2 += col[i] ; } FOR ( i , 1 , n ) FOR ( j , 1 , m ) addedge ( i , n + j , k ) ; ISAP () ; if ( flow != sum1 || flow != sum2 ) { printf ( "Impossible " ) ; return ; } int flag = 1 ; CLR ( vis , 0 ) ; FOR ( i , 1 , n ) { if ( !flag ) break ; if ( dfs ( i , 0 ) ) flag = 0 ; } if ( !flag ) printf ( "Not Unique " ) ; else put () ; } } nw ; int main () { while ( ~scanf ( "%d%d%d" , &nw.n , &nw.m , &nw.k ) ) nw.solve () ; return 0 ; }