zoukankan      html  css  js  c++  java
  • 機器學習基石(Machine Learning Foundations) 机器学习基石 作业四 Q13-20 MATLAB实现

            大家好,我是Mac Jiang,今天和大家分享Coursera-NTU-機器學習基石(Machine Learning Foundations)-作业四 Q13-20的MATLAB实现。

    曾经的代码都是通过C++实现的。可是发现C++实现这些代码太麻烦。这次作业还要频繁更改參数值,所以选择用MATLAB实现了。与C++相比。MATLAB实现显然轻松非常多。在数据导入方面也更加方便。我的代码尽管可以得到正确答案,可是当中可能有某些思想或者细节是错误的,假设各位博友发现,请及时留言纠正,谢谢。再次声明,博主提供实现代码的原因不是为了让各位通过測试,而是为学习有困难的同学提供一条解决思路。希望我的文章对您的学习有一些帮助!

    本文出处:http://blog.csdn.net/a1015553840/article/details/51173020

    其它问题解答请看汇总帖:http://blog.csdn.net/a1015553840/article/details/51085129

    1.sign函数

    function S = sign(x)  %计算sign
    [m,n] = size(x);
    for i = 1:m,
        for j = 1:n;
    
            if x(i,j) <= 0,
                S = 1;
            else
                S = -1;
            end
        end
    end
    end

    2.计算正则化线性回归函数LGwithRegularization

    function Wreg = LGwithRegularization(X,y,lambda)
    [m,n] = size(X);
    Wreg = inv(X' * X + lambda * eye(n)) * X' * y;%正则化的线性回归求解
    end

    3.错误计算函数Error01 (注意。这里用的是0/1错误)

    function E = Error01(X,y,Wreg)
    [m,n] = size(X);
    E = 1 - sum(sign(X * Wreg) == y) / m;%计算错误率
    end

    4.主进程

    clc
    trainingData = load('trainingData.txt');
    Xtrain = trainingData(:, [1, 2]); ytrain = trainingData(:, 3);
    testData = load('testData.txt');
    Xtest = testData(:,[1,2]);ytest = testData(:,3);
    [m,n] = size(Xtrain);
    Xtrain = [ones(m,1), Xtrain];
    [a,b] = size(Xtest);
    Xtest = [ones(a,1), Xtest];
    
    %13-15
    %lambda = 10^-3;
    %Wreg = LGwithRegularization(Xtrain,ytrain,lambda);
    %Ein = Error01(Xtrain,ytrain,Wreg)
    %Eout = Error01(Xtest,ytest,Wreg)
    
    %16-17
    %lambda = 10^-3;
    %Wreg = LGwithRegularization(Xtrain(1:120,:),ytrain(1:120,:),lambda);
    %Etrain = Error01(Xtrain(1:120,:),ytrain(1:120,:),Wreg)
    %Eval = Error01(Xtrain(121:200,:),ytrain(121:200,:),Wreg)
    %Eout = Error01(Xtest,ytest,Wreg)
    
    %18
    %lambda = 10^0;
    %Wreg = LGwithRegularization(Xtrain,ytrain,lambda);
    %Ein = Error01(Xtrain,ytrain,Wreg)
    %Eout = Error01(Xtest,ytest,Wreg)
    
    %19
    %lambda = 10^-6
    %Ecv = 0;
    %v = 5;
    %per = m / v;
    %for i = 1:v,
    %    Xtemp = Xtrain;
    %    ytemp = ytrain;
    %    Xtemp(1+(i-1)*per:i*per,:) = [];%出去用于求交叉验证的样本
    %    ytemp(1+(i-1)*per:i*per,:) = [];
    %    Wreg = LGwithRegularization(Xtemp,ytemp,lambda);
    %    Error01(Xtrain(1+(i-1)*per:i*per,:),ytrain(1+(i-1)*per:i*per,:),Wreg)%利用交叉验证的样本求Ecv
    %    Ecv = Ecv + Error01(Xtrain(1+(i-1)*per:i*per,:),ytrain(1+(i-1)*per:i*per,:),Wreg);
    %end
    %Ecv = Ecv / v
    
    %20
    %lambda = 10^-8;
    %Wreg = LGwithRegularization(Xtrain,ytrain,lambda);
    %Ein = Error01(Xtrain,ytrain,Wreg)
    %Eout = Error01(Xtest,ytest,Wreg)
    


    13.第十三题


    (1)题意:从两个站点下载训练样本和測试样本,利用正则化的线性回归,參数lambda取10。得到Ein 和Eout

    (2)答案:Ein = 0.050 Eout = 0.045


    14-15:第14-15题


    (1)题意: 14.分别取lamda值为.....计算Ein和Eout。选取最小的Ein相应的正确答案,假设两个lambda相应的答案一样,选择大的lambda

                         15.选取最小Eout相应的正确答案

    (2)答案:14.log = -8, Ein = 0.015,Eout = 0.02

                        15.log = -7,Ein = 0.03,Eout = 0.015


    16.第十六题

    (1)题意:利用前120个样本作为训练样本,后80个样本作为測试样本,分别计算不同lambda相应的Etrain,Eval,Eout。选择最小的Etrain相应的答案

    (2)答案:log = -8,Etrain = 0, Eval = 0.05, Eout = 0.025


    17.第十七题

    (1)题意:和16题的做法一样。选择最小Eval相应的正确答案

    (2)答案:log = 0, Etrain = 0.0333,Eval = 0.0375,Eout = 0.0280


    18.第十八题

    (1)题意:利用17题得到的最优lambda,利用全部样本作为训练样本。计算Ein,Eout

    (2)答案:Ein = 0.035 Eout=0.02


    19-20:第19-20题

    (1)题意:19.把样本分为5份,利用交叉验证的方法计算Ecv,计算得到最小的Ecv

                      20.利用19得到的最小Ecv相应的lambda值,计算Ein,Eout

    (2)答案:19. log=-8, Eval = 0.03

                        20.Ein = 0.015。Eout = 0.02


    本文出处:http://blog.csdn.net/a1015553840/article/details/51173020

    其它问题解答请看汇总帖:http://blog.csdn.net/a1015553840/article/details/51085129


  • 相关阅读:
    最近邻插值
    tp类型自动转换和自动完成
    tp读取器和写入器
    tp模型和数据库操作方法
    tp数据库操作
    tp请求和响应
    tp配置+路由+基本操作
    git的常见操作方法
    php 检查该数组有重复值
    公众号的TOKEN配置PHP代码
  • 原文地址:https://www.cnblogs.com/yxysuanfa/p/7263192.html
Copyright © 2011-2022 走看看